DOI QR코드

DOI QR Code

Numerical Study on Multiphase Flows Induced by Wall Adhesion

벽면부착에 의해 야기되는 다상유동에 관한 수치적 연구

  • 명현국 (국민대학교 기계시스템공학부)
  • Received : 2011.12.21
  • Accepted : 2012.04.06
  • Published : 2012.07.01

Abstract

The present paper presents a numerical study on multiphase flows induced by wall adhesion. The continuum surface force (CSF) model with the wall adhesion boundary condition model is used for calculating the surface tension force; this model is implemented in an in-house solution code (PowerCFD). The present method (code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with a volume capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. The effects of wall adhesion are then numerically simulated by using the present method for a shallow pool of water located at the bottom of a cylindrical tank with no external forces such as gravity. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method efficiently simulates the surface tension-dominant multiphase flows induced by wall adhesion.

본 연구에서는 벽면부착에 의해 야기되는 다상유동에 대한 수치적 연구를 제시한다. 먼저 다상유동 해석을 위해 표면장력에 대한 CSF(Continuum Surface Force) 모델 및 벽면부착 경계조건 모델을 비정렬격자계에 적합하도록 수치해석방법을 정립시키고, Myong(2009)이 개발한 비정렬격자계와 VOF 방법으로 체적포착법(volume capturing method)을 사용한 수치해석방법(코드)에 삽입하였다. 또한 본 수치해석방법을 사용하여 중력을 포함하여 어떤 외력도 존재하지 않고 오직 벽면부착에 의해 야기되는 유동현상인 원통형 탱크의 바닥에 위치한 얕은 물풀(water pool)에 대해 물이 벽면을 적시는 경우와 적시지 않는 경우에 대해 수치해석 하였다. 연구결과, 본 수치해석방법은 벽면부착에 의해 야기되는 다상유동 문제에 대한 유용성이 입증되었다.

Keywords

References

  1. Blackbill, J. U., Kothe, C. and Zamach, C., 1992, "A Continuum Method for Modeling Surface Tension," J. Comput. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  2. Hirt, C. W. and Nicholls, B. D., 1981, "Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries," J. Comput. Phys., Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  3. Lafaurie, B., Nardone, R., Scardovelli, S., Zaleski, G. and Zanetti, G., 1994, "Modeling Merging and Fragmentation in Multiphase Flows with SURFER," J. Comput. Phys., Vol. 113, pp. 134-147. https://doi.org/10.1006/jcph.1994.1123
  4. Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M. and Williams, M. W., 2006, "A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models within a Volume Tracking Framework," J. Comput. Phys., Vol. 213, pp. 141-173. https://doi.org/10.1016/j.jcp.2005.08.004
  5. Tong, A. Y. and Wang, Z., 2007, "A Numerical Method for Capilarity-Dominant Free Surface Flows," J. Comput. Phys., Vol. 221, pp. 506-523. https://doi.org/10.1016/j.jcp.2006.06.034
  6. Seifollahi, M., Shirani, E. and Ashgriz, N., 2008, "An Improved Method for Calculation of Interface Pressure Force in PLIC-VOF Methods," European J. of Mechanics B/Fluids, Vol. 27, pp. 1-23. https://doi.org/10.1016/j.euromechflu.2007.01.002
  7. Gerlach, D., Tomar, G., Biswas, G. and Durst, F., 2006, "Comparison of Volume-of-Fluid Methods for Surface Tension-Dominant Two-Phase Flows," Int. J. of Jeat and Mass Transfer, Vol. 49, pp. 740-754. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.045
  8. Rider, W. J. and Kothe, D. B., 1998, "Reconstruction Volume Tracking," J. Comput. Phys., Vol.141, pp.112-152. https://doi.org/10.1006/jcph.1998.5906
  9. Muzaferija, S. and Peric, M., 1999, "Computation of Free Surface Flows using Interface Tracking and Interface Capturing Methods," Chap. 2, in Mahrenholtz, O. and Markewicz, M., Nonlinear Water Wave Interaction, Comput. Mech. Publications.
  10. Ubbink, O., 1997, "Numerical Prediction of Two Fluid Systems with Sharp Interface," PhD Thesis, University of London.
  11. Zhao, Y., Tan, H. H. and Zhang, B., 2002, "A High-Resolution Characteristics-based Implicit Dual Time-Stepping VOF Method for Free Surface Flow Simulation on Unstructured Grids," J. Comput. Phys., Vol. 183, pp. 233-273. https://doi.org/10.1006/jcph.2002.7196
  12. Myong, H. K., 2011, "Numerical Simulation of Surface Tension-Dominant Multiphase Flows with Volume Capturing Method and Unstructured Grid System" Trans. of the KSME(B), Vol. 35, No. 7, pp. 723-733.
  13. Fluent, Fluent 6.2 User's Guide, 2006.
  14. Myong, H. K. and Kim, J. E., 2006, "A Study on an Interface Capturing Method Applicable to Unstructured Meshes for the Analysis of Free Surface Flow," KSCFE J. of Computational Fluids Engineering, Vol. 11, No. 4, pp.14-19.
  15. Myong, H. K., 2009, "Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method" Trans. of the KSME(B), Vol. 33, No. 6, pp. 443-453.
  16. Myong, H. K., 2008, "Comparative Study on High Resolution Schemes in Interface Capturing Method Suitable for Unstructured Meshes" Trans. of the KSME(B), Vol. 32, No. 1, pp. 23-29.
  17. Myong, H. K. and Kim, J., 2005, "Development of 3D Flow Analysis Code using Unstructured Grid System(1st Report, Numerical Method)," Trans. of the KSME(B), Vol. 29, No. 9, pp. 1049-1056.
  18. Myong, H. K. and Kim, J., 2006, "Development of a Flow Analysis Code using an Unstructured Grid with the Cell-Centered Method," J. of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No.12, pp.2218-2229. https://doi.org/10.1007/BF02916339

Cited by

  1. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces vol.38, pp.3, 2014, https://doi.org/10.3795/KSME-B.2014.38.3.263
  2. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.513
  3. Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-B.2015.39.11.871
  4. Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions vol.39, pp.4, 2015, https://doi.org/10.3795/KSME-B.2015.39.4.359
  5. Numerical Analysis of the Movement of an Initially Hemispherical Droplet on Hydrophilic/Hydrophobic Surfaces vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-B.2015.39.5.405