DOI QR코드

DOI QR Code

Sarsasapogenin Increases Melanin Synthesis via Induction of Tyrosinase and Microphthalmia-Associated Transcription Factor Expression in Melan-a Cells

  • Moon, Eun-Jung (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Kim, Ae-Jung (Graduate School of Alternative Medicine, Kyonggi University) ;
  • Kim, Sun-Yeou (College of Pharmacy, Gachon University)
  • Received : 2012.05.09
  • Accepted : 2012.05.18
  • Published : 2012.05.31

Abstract

Sarsasapogenin (SAR) is a steroidal sapogenin that is used as starting material for the industrial synthesis of steroids. It has various pharmacological benefits, such as antitumor and antidepressant activities. Since its effect on melanin biosynthesis has not been reported, we used murine melanocyte melan-a cells to investigate whether SAR influences melanogenesis. In this study, SAR significantly increased the melanin content of the melan-a cells from 1 to 10 ${\mu}M$. Based on an enzymatic activity assay using melan-a cell lysate, SAR had no effect on tyrosinase and DOPAchrome tautomerase activities. It also did not affect the protein expression of tyrosinase-related protein 1 and DOPAchrome tautomerase. However, protein levels of tyrosinase and microphthalmia-associated transcription factor were strongly stimulated by treatment with SAR. Therefore, our reports suggest that SAR treatment may induce melanogenesis through the stimulation of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells.

Keywords

References

  1. Applezweig. (1987) Treatment of obesity and diabetes using sapogenins. US4680289.
  2. Bao, W., Pan, H., Lu, M., Ni, Y., Zhang, R. and Gong, X. (2007) The apoptotic effect of sarsasapogenin from Anemarrhena asphodeloides on HepG2 human hepatoma cells. Cell Biol. Int. 31, 887-892. https://doi.org/10.1016/j.cellbi.2007.02.001
  3. Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J. P. and Ballotti, R. (1998a) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835. https://doi.org/10.1083/jcb.142.3.827
  4. Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J. P. and Ballotti, R. (1998b) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell Biol. 18, 694-702.
  5. Birlea, S. A., Costin, G. E. and Norris, D. A. (2009) New insights on therapy with vitamin D analogs targeting the intracellular pathways that control repigmentation in human vitiligo. Med. Res. Rev. 29, 514-546. https://doi.org/10.1002/med.20146
  6. Cabanes, J., Chazarra, S. and Garcia-Carmona, F. (1994) Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46, 982-985. https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  7. del Marmol, V. and Beermann, F. (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  8. Fuller, B. B., Drake, M. A., Spaulding, D. T. and Chaudhry, F. (2000) Downregulation of tyrosinase activity in human melanocyte cell cultures by yohimbine. J. Invest. Dermatol. 114, 268-276. https://doi.org/10.1046/j.1523-1747.2000.00860.x
  9. Grabbe, J., Welker, P., Dippel, E. and Czarnetzki, B. M. (1994) Stem cell factor, a novel cutaneous growth factor for mast cells and melanocytes. Arch. Dermatol. Res. 287, 78-84. https://doi.org/10.1007/BF00370723
  10. Halaban, R., Ghosh, S. and Baird, A. (1987) bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev. Biol. 23, 47-52. https://doi.org/10.1007/BF02623492
  11. Halaban, R., Pomerantz, S. H., Marshall, S. and Lerner, A. B. (1984) Tyrosinase activity and abundance in Cloudman melanoma cells. Arch. Biochem. Biophys. 230, 383-387. https://doi.org/10.1016/0003-9861(84)90121-8
  12. Hearing, V. J. (2000) The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res. 13 Suppl 8, 23-34. https://doi.org/10.1034/j.1600-0749.13.s8.7.x
  13. Hosoi, J., Abe, E., Suda, T. and Kuroki, T. (1985) Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45, 1474-1478.
  14. Hu, Y., Xia, Z., Sun, Q., Orsi, A. and Rees, D. (2005) A new approach to the pharmacological regulation of memory: Sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-defi cit rat models. Brain Res. 1060, 26-39. https://doi.org/10.1016/j.brainres.2005.08.019
  15. Hunt, G., Todd, C., Cresswell, J. E. and Thody, A. J. (1994) Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha- MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J. Cell Sci. 107, 205-211.
  16. Ito, A., Tanaka, C., Takeuchi, T. and Mishima, Y. (1991) Glucocorticoid stimulates melanogenesis and tyrosinase gene expression in B16 melanoma cells. Pigment Cell Res. 4, 247-251. https://doi.org/10.1111/j.1600-0749.1991.tb00448.x
  17. Jeon, S., Kim, N. H., Koo, B. S., Lee, H. J. and Lee, A. Y. (2007) Bee venom stimulates human melanocyte proliferation, melanogenesis, dendricity and migration. Exp. Mol. Med. 39, 603-613. https://doi.org/10.1038/emm.2007.66
  18. Jimenez-Cervantes, C., Solano, F., Kobayashi, T., Urabe, K., Hearing, V. J., Lozano, J. A. and Garcia-Borron, J. C. (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole- 2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J. Biol. Chem. 269, 17993-18000.
  19. Kim, D. S., Kim, S. Y., Park, S. H., Choi, Y. G., Kwon, S. B., Kim, M. K., Na, J. I., Youn, S. W. and Park, K. C. (2005) Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol. Pharm. Bull. 28, 2216-2219. https://doi.org/10.1248/bpb.28.2216
  20. Kobayashi, N., Nakagawa, A., Muramatsu, T., Yamashina, Y., Shirai, T., Hashimoto, M. W., Ishigaki, Y., Ohnishi, T. and Mori, T. (1998) Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J. Invest. Dermatol. 110, 806-810. https://doi.org/10.1046/j.1523-1747.1998.00178.x
  21. Kovacs, S. O. (1998) Vitiligo. J. Am. Acad. Dermatol. 38, 647-666. https://doi.org/10.1016/S0190-9622(98)70194-X
  22. Krasagakis, K., Garbe, C., Kruger-Krasagakes, S. and Orfanos, C. E. (1993) 12-O-tetradecanoylphorbol-13-acetate not only modulates proliferation rates, but also alters antigen expression and LAK-cell susceptibility of normal human melanocytes in vitro. J. Invest. Dermatol. 100, 653-659. https://doi.org/10.1111/1523-1747.ep12472320
  23. Lan, C. C., Chen, G. S., Chiou, M. H., Wu, C. S., Chang, C. H. and Yu, H. S. (2005) FK506 promotes melanocyte and melanoblast growth and creates a favourable milieu for cell migration via keratinocytes: possible mechanisms of how tacrolimus ointment induces repigmentation in patients with vitiligo. Br. J. Dermatol. 153, 498-505. https://doi.org/10.1111/j.1365-2133.2005.06739.x
  24. Lee, J., Jung, E., Park, J., Park, E., Kim, J., Hong, S., Park, J., Park, S. and Park, D. (2005) Glycyrrhizin induces melanogenesis by elevating a cAMP level in b16 melanoma cells. J. Invest. Dermatol. 124, 405-411. https://doi.org/10.1111/j.0022-202X.2004.23606.x
  25. Lee, J., Jung, K., Kim, Y. S. and Park, D. (2007) Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sci. 81, 249-254. https://doi.org/10.1016/j.lfs.2007.05.009
  26. Ma, D., Zhang, J., Sugahara, K., Sagara, Y. and Kodama, H. (2001) Effect of sarsasapogenin and its derivatives on the stimulus coupled responses of human neutrophils. Clin. Chim. Acta. 314, 107-112. https://doi.org/10.1016/S0009-8981(01)00638-6
  27. Maeda, K., Naganuma, M., Fukuda, M., Matsunaga, J. and Tomita, Y. (1996) Effect of pituitary and ovarian hormones on human melanocytes in vitro. Pigment Cell Res. 9, 204-212. https://doi.org/10.1111/j.1600-0749.1996.tb00110.x
  28. Ren, L. X., Luo, Y. F., Li, X. and Wu, Y. L. (2007) Antidepressant activity of sarsasapogenin from Anemarrhena asphodeloides Bunge (Liliaceae). Pharmazie 62, 78-79.
  29. Riley, P. A. (1997) Melanin. Int. J. Biochem. Cell Biol. 29, 1235-1239. https://doi.org/10.1016/S1357-2725(97)00013-7
  30. Schallreuter, K. U., Hasse, S., Rokos, H., Chavan, B., Shalbaf, M., Spencer, J. D. and Wood, J. M. (2009) Cholesterol regulates melanogenesis in human epidermal melanocytes and melanoma cells. Exp. Dermatol. 18, 680-688. https://doi.org/10.1111/j.1600-0625.2009.00850.x
  31. Scott, G. A., Jacobs, S. E. and Pentland, A. P. (2006) sPLA2-X stimulates cutaneous melanocyte dendricity and pigmentation through a lysophosphatidylcholine-dependent mechanism. J. Invest. Dermatol. 126, 855-861. https://doi.org/10.1038/sj.jid.5700180
  32. Takahashi, H. and Parsons, P. G. (1990) In vitro phenotypic alteration of human melanoma cells induced by differentiating agents: heterogeneous effects on cellular growth and morphology, enzymatic activity, and antigenic expression. Pigment Cell Res. 3, 223-232. https://doi.org/10.1111/j.1600-0749.1990.tb00294.x
  33. Toyofuku, K., Wada, I., Valencia, J. C., Kushimoto, T., Ferrans, V. J. and Hearing, V. J. (2001) Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild-type proteins. FASEB J. 15, 2149-2161. https://doi.org/10.1096/fj.01-0216com
  34. Wilkins, L., Gilchrest, B. A., Szabo, G., Weinstein, R. and Maciag, T. (1985) The stimulation of normal human melanocyte proliferation in vitro by melanocyte growth factor from bovine brain. J. Cell Physiol. 122, 350-361. https://doi.org/10.1002/jcp.1041220304
  35. Wong, G. and Pawelek, J. (1975) Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature 255, 644-646. https://doi.org/10.1038/255644a0

Cited by

  1. A novel syntheticPiperamide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+influx via TRPM1 channels vol.29, pp.1, 2016, https://doi.org/10.1111/pcmr.12430
  2. Modulation of Melanin Synthesis by Amaranthus spp. L Seed Extract in Melan-a Cells vol.22, pp.3, 2016, https://doi.org/10.20307/nps.2016.22.3.168
  3. Inhibitory Effects of Resveratrol on Melanin Synthesis in Ultraviolet B-Induced Pigmentation in Guinea Pig Skin vol.22, pp.1, 2014, https://doi.org/10.4062/biomolther.2013.081
  4. Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue vol.22, pp.5, 2014, https://doi.org/10.4062/biomolther.2014.098
  5. Quantitative determination of sarsasapogenin in rat plasma using liquid chromatography-tandem mass spectrometry vol.1022, 2016, https://doi.org/10.1016/j.jchromb.2016.04.020
  6. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease vol.153, pp.None, 2020, https://doi.org/10.1016/j.steroids.2019.108529
  7. Pyroptosis in diabetic nephropathy vol.523, pp.None, 2012, https://doi.org/10.1016/j.cca.2021.09.003