DOI QR코드

DOI QR Code

Investigation into the Efficacy of Val-SN-38, a Valine-Ester Prodrug of the Anti-Cancer Agent SN-38

  • Received : 2012.04.18
  • Accepted : 2012.05.04
  • Published : 2012.05.31

Abstract

We recently reported that Val-SN-38, a novel valine ester prodrug of SN-38, had greatly improved the intracellular accumulation of SN-38 in MCF-7 cell line, probably through enhanced uptake via amino acid transporters. In the present study, the efficacy of Val-SN-38 was further investigated both in vitro and in vivo. It was found that the in vitro cytotoxic effect of Val-SN-38 was similar to that of SN-38. Moreover, Val-SN-38 exhibited an equal potency to that of SN-38 in survival experiments in vivo. Because these results seemed to be contrary to the previous finding, further investigation was performed to find out the underlying cause of the contradiction. As only the lactone form is known to have cytotoxic activity, the proportion of lactone in Val-SN-38 and SN-38 was determined, but no differences were found. However, it turned out that Val-SN-38 had poor stability compared with SN-38, which resulted in a decrease in beneficial efficacy for Val-SN-38. Overall, the present study showed that a valine-added prodrug approach could be advantageous provided that the stability of the compound can be ensured. We believe this is a noteworthy study that unravels the discrepancy between intracellular accumulation and efficacy of valine-added prodrug.

Keywords

References

  1. Adane, E. D., Liu, Z., Xiang, T. X., Anderson, B. D. and Leggas, M. (2010) Factors affecting the in vivo lactone stability and systemic clearance of the lipophilic camptothecin analogue AR-67. Pharm. Res. 27, 1416-1425. https://doi.org/10.1007/s11095-010-0137-3
  2. Araki, E., Ishikawa, M., Iigo, M., Koide, T., Itabashi, M. and Hoshi, A. (1993) Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn. J. Cancer Res. 84, 697-702. https://doi.org/10.1111/j.1349-7006.1993.tb02031.x
  3. Balimane, P. V., Tamai, I., Guo, A., Nakanishi, T., Kitada, H., Leibach, F. H., Tsuji, A. and Sinko, P. J. (1998) Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250, 246-251. https://doi.org/10.1006/bbrc.1998.9298
  4. Burke, T. G. and Mi, Z. (1993) Preferential binding of the carboxylate form of camptothecin by human serum albumin. Anal. Biochem. 212, 285-287. https://doi.org/10.1006/abio.1993.1325
  5. Chu, X. Y., Kato, Y., Niinuma, K., Sudo, K. I., Hakusui, H. and Sugiyama, Y. (1997) Multispecifi c organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J. Pharmacol. Exp. Ther. 281, 304-314.
  6. Cunningham, D., Pyrhönen, S., James, R. D., Punt, C. J., Hickish, T. F., Heikkila, R., Johannesen, T. B., Starkhammar, H., Topham, C. A., Awad, L., Jacques, C. and Herait, P. (1998) Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352, 1413-1418. https://doi.org/10.1016/S0140-6736(98)02309-5
  7. Fassberg, J. and Stella, V. J. (1992) A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 81, 676-684. https://doi.org/10.1002/jps.2600810718
  8. Ganapathy, M. E., Huang, W., Wang, H., Ganapathy, V. and Leibach, F. H. (1998) Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246, 470-475. https://doi.org/10.1006/bbrc.1998.8628
  9. Guo, A., Hu, P., Balimane, P. V., Leibach, F. H. and Sinko, P. J. (1999) Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. J. Pharmacol. Exp. Ther. 289, 448-454.
  10. Hertzberg, R. P., Busby, R. W., Caranfa, M. J., Holden, K. G., Johnson, R. K., Hecht, S. M. and Kingsbury, W. D. (1990) Irreversible trapping of the DNA-topoisomerase I covalent complex. Affinity labeling of the camptothecin binding site. J. Biol. Chem. 265, 19287-19295.
  11. Hoffman, R. M. (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New Drugs 17, 343-359. https://doi.org/10.1023/A:1006326203858
  12. Itoh, T., Itagaki, S., Sumi, Y., Hirano, T., Takemoto, I. and Iseki, K. (2005) Uptake of irinotecan metabolite SN-38 by the human intestinal cell line Caco-2. Cancer Chemother. Pharmacol. 55, 420-424. https://doi.org/10.1007/s00280-004-0937-4
  13. Iyer, L., Ramírez, J., Shepard, D. R., Bingham, C. M., Hossfeld, D. K., Ratain, M. J. and Mayer, U. (2002) Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-defi cient mice. Cancer Chemother. Pharmacol. 49, 336-341. https://doi.org/10.1007/s00280-001-0420-4
  14. Kawato, Y., Aonuma, M., Hirota, Y., Kuga, H. and Sato, K. (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 51, 4187-4191.
  15. Khanna, R., Morton, C. L., Danks, M. K. and Potter, P. M. (2000) Proficient metabolism of irinotecan by a human intestinal carboxylesterase. Cancer Res. 60, 4725-4728.
  16. Kwak, E. Y., Shim, W. S., Chang, J. E., Chong, S., Kim, D. D., Chung, S. J. and Shim, C. K. (2012) Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters. Xenobiotica [Epub ahead of print]
  17. Mathijssen, R. H., van Alphen, R. J., Verweij, J., Loos, W. J., Nooter, K., Stoter, G. and Sparreboom, A. (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 7, 2182-2194.
  18. Mullangi, R. and Srinivas, N. R. (2009) Clopidogrel: review of bioanalytical methods, pharmacokinetics/pharmacodynamics, and update on recent trends in drug-drug interaction studies. Biomed. Chromatogr. 23, 26-41. https://doi.org/10.1002/bmc.1128
  19. Rivory, L. P., Chatelut, E., Canal, P., Mathieu-Boue, A. and Robert, J. (1994) Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. Cancer Res. 54, 6330-6333.
  20. Rothenberg, M. L. (2001) Irinotecan (CPT-11): recent developments and future directions--colorectal cancer and beyond. Oncologist 6, 66-80. https://doi.org/10.1634/theoncologist.6-1-66
  21. Scott, D. O., Bindra, D. S., Sutton, S. C. and Stella, V. J. (1994) Urinary and biliary disposition of the lactone and carboxylate forms of 20(S)-camptothecin in rats. Drug Metab. Dispos. 22, 438-442.
  22. Sugawara, M., Huang, W., Fei, Y. J., Leibach, F. H., Ganapathy, V. and Ganapathy, M. E. (2000) Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89, 781-789. https://doi.org/10.1002/(SICI)1520-6017(200006)89:6<781::AID-JPS10>3.0.CO;2-7
  23. Tallman, M. N., Ritter, J. K. and Smith, P. C. (2005) Differential rates of glucuronidation for 7-ethyl-10-hydroxy-camptothecin (SN-38) lactone and carboxylate in human and rat microsomes and recombinant UDP-glucuronosyltransferase isoforms. Drug Metab. Dispos. 33, 977-983. https://doi.org/10.1124/dmd.104.003491
  24. Umapathy, N. S., Ganapathy, V. and Ganapathy, M. E. (2004) Transport of amino acid esters and the amino-acid-based prodrug valganciclovir by the amino acid transporter ATB(0,+). Pharm. Res. 21, 1303-1310. https://doi.org/10.1023/B:PHAM.0000033019.49737.28

Cited by

  1. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38 vol.172, pp.1, 2013, https://doi.org/10.1016/j.jconrel.2013.07.022
  2. In vitro anti-glioblastoma activity of L-valine derived boroxazolidones vol.854, pp.None, 2012, https://doi.org/10.1016/j.ejphar.2019.04.020
  3. A Citrulline‐Based Translational Population System Toxicology Model for Gastrointestinal‐Related Adverse Events Associated With Anticancer Treatments vol.8, pp.12, 2019, https://doi.org/10.1002/psp4.12475