References
- Adane, E. D., Liu, Z., Xiang, T. X., Anderson, B. D. and Leggas, M. (2010) Factors affecting the in vivo lactone stability and systemic clearance of the lipophilic camptothecin analogue AR-67. Pharm. Res. 27, 1416-1425. https://doi.org/10.1007/s11095-010-0137-3
- Araki, E., Ishikawa, M., Iigo, M., Koide, T., Itabashi, M. and Hoshi, A. (1993) Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn. J. Cancer Res. 84, 697-702. https://doi.org/10.1111/j.1349-7006.1993.tb02031.x
- Balimane, P. V., Tamai, I., Guo, A., Nakanishi, T., Kitada, H., Leibach, F. H., Tsuji, A. and Sinko, P. J. (1998) Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250, 246-251. https://doi.org/10.1006/bbrc.1998.9298
- Burke, T. G. and Mi, Z. (1993) Preferential binding of the carboxylate form of camptothecin by human serum albumin. Anal. Biochem. 212, 285-287. https://doi.org/10.1006/abio.1993.1325
- Chu, X. Y., Kato, Y., Niinuma, K., Sudo, K. I., Hakusui, H. and Sugiyama, Y. (1997) Multispecifi c organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J. Pharmacol. Exp. Ther. 281, 304-314.
- Cunningham, D., Pyrhönen, S., James, R. D., Punt, C. J., Hickish, T. F., Heikkila, R., Johannesen, T. B., Starkhammar, H., Topham, C. A., Awad, L., Jacques, C. and Herait, P. (1998) Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352, 1413-1418. https://doi.org/10.1016/S0140-6736(98)02309-5
- Fassberg, J. and Stella, V. J. (1992) A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 81, 676-684. https://doi.org/10.1002/jps.2600810718
- Ganapathy, M. E., Huang, W., Wang, H., Ganapathy, V. and Leibach, F. H. (1998) Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246, 470-475. https://doi.org/10.1006/bbrc.1998.8628
- Guo, A., Hu, P., Balimane, P. V., Leibach, F. H. and Sinko, P. J. (1999) Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. J. Pharmacol. Exp. Ther. 289, 448-454.
- Hertzberg, R. P., Busby, R. W., Caranfa, M. J., Holden, K. G., Johnson, R. K., Hecht, S. M. and Kingsbury, W. D. (1990) Irreversible trapping of the DNA-topoisomerase I covalent complex. Affinity labeling of the camptothecin binding site. J. Biol. Chem. 265, 19287-19295.
- Hoffman, R. M. (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New Drugs 17, 343-359. https://doi.org/10.1023/A:1006326203858
- Itoh, T., Itagaki, S., Sumi, Y., Hirano, T., Takemoto, I. and Iseki, K. (2005) Uptake of irinotecan metabolite SN-38 by the human intestinal cell line Caco-2. Cancer Chemother. Pharmacol. 55, 420-424. https://doi.org/10.1007/s00280-004-0937-4
- Iyer, L., Ramírez, J., Shepard, D. R., Bingham, C. M., Hossfeld, D. K., Ratain, M. J. and Mayer, U. (2002) Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-defi cient mice. Cancer Chemother. Pharmacol. 49, 336-341. https://doi.org/10.1007/s00280-001-0420-4
- Kawato, Y., Aonuma, M., Hirota, Y., Kuga, H. and Sato, K. (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 51, 4187-4191.
- Khanna, R., Morton, C. L., Danks, M. K. and Potter, P. M. (2000) Proficient metabolism of irinotecan by a human intestinal carboxylesterase. Cancer Res. 60, 4725-4728.
- Kwak, E. Y., Shim, W. S., Chang, J. E., Chong, S., Kim, D. D., Chung, S. J. and Shim, C. K. (2012) Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters. Xenobiotica [Epub ahead of print]
- Mathijssen, R. H., van Alphen, R. J., Verweij, J., Loos, W. J., Nooter, K., Stoter, G. and Sparreboom, A. (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 7, 2182-2194.
- Mullangi, R. and Srinivas, N. R. (2009) Clopidogrel: review of bioanalytical methods, pharmacokinetics/pharmacodynamics, and update on recent trends in drug-drug interaction studies. Biomed. Chromatogr. 23, 26-41. https://doi.org/10.1002/bmc.1128
- Rivory, L. P., Chatelut, E., Canal, P., Mathieu-Boue, A. and Robert, J. (1994) Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. Cancer Res. 54, 6330-6333.
- Rothenberg, M. L. (2001) Irinotecan (CPT-11): recent developments and future directions--colorectal cancer and beyond. Oncologist 6, 66-80. https://doi.org/10.1634/theoncologist.6-1-66
- Scott, D. O., Bindra, D. S., Sutton, S. C. and Stella, V. J. (1994) Urinary and biliary disposition of the lactone and carboxylate forms of 20(S)-camptothecin in rats. Drug Metab. Dispos. 22, 438-442.
- Sugawara, M., Huang, W., Fei, Y. J., Leibach, F. H., Ganapathy, V. and Ganapathy, M. E. (2000) Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89, 781-789. https://doi.org/10.1002/(SICI)1520-6017(200006)89:6<781::AID-JPS10>3.0.CO;2-7
- Tallman, M. N., Ritter, J. K. and Smith, P. C. (2005) Differential rates of glucuronidation for 7-ethyl-10-hydroxy-camptothecin (SN-38) lactone and carboxylate in human and rat microsomes and recombinant UDP-glucuronosyltransferase isoforms. Drug Metab. Dispos. 33, 977-983. https://doi.org/10.1124/dmd.104.003491
- Umapathy, N. S., Ganapathy, V. and Ganapathy, M. E. (2004) Transport of amino acid esters and the amino-acid-based prodrug valganciclovir by the amino acid transporter ATB(0,+). Pharm. Res. 21, 1303-1310. https://doi.org/10.1023/B:PHAM.0000033019.49737.28
Cited by
- Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38 vol.172, pp.1, 2013, https://doi.org/10.1016/j.jconrel.2013.07.022
- In vitro anti-glioblastoma activity of L-valine derived boroxazolidones vol.854, pp.None, 2012, https://doi.org/10.1016/j.ejphar.2019.04.020
- A Citrulline‐Based Translational Population System Toxicology Model for Gastrointestinal‐Related Adverse Events Associated With Anticancer Treatments vol.8, pp.12, 2019, https://doi.org/10.1002/psp4.12475