DOI QR코드

DOI QR Code

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

  • Lee, Na-Young (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University) ;
  • Rieckmann, Peter (Department of Neurology, Julius-Maximilians-University) ;
  • Kang, Young-Sook (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University)
  • Received : 2012.03.12
  • Accepted : 2012.04.25
  • Published : 2012.05.31

Abstract

The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.

Keywords

References

  1. Akazawa, Y., Kawaguchi, H., Funahashi, M., Watanabe, Y., Yamaoka, K., Hashida, M. and Takakura, Y. (2002) Effect of interferons on P-glycoprotein-mediated rhodamine-123 efflux in cultured rat hepatocytes. J. Pharm. Sci. 91, 2110-2115. https://doi.org/10.1002/jps.10199
  2. Bauer, B., Hartz, A. M. and Miller, D. S. (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol. Pharmacol. 71, 667-675.
  3. Belliard, A. M., Lacour, B., Farinotti, R. and Leroy, C. (2004) Effect of tumor necrosis factor-alpha and interferon-gamma on intestinal Pglycoprotein expression, activity, and localization in Caco-2 cells. J. Pharm. Sci. 93, 1524-1536. https://doi.org/10.1002/jps.20072
  4. Cheshire, J. L. and Baldwin, A. S. Jr. (1997) Synergistic activation of NF-kappaB by tumor necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation and de novo I kappaB-beta degradation. Mol. Cell Biol. 17, 6746-6754.
  5. Cornford, E. M. (1985) The blood /brain barrier, a dynamic regulatory interface. Mol. Physiol. 7, 219-259.
  6. Dixit, S. G., Zingarelli, B., Buckley, D. J., Buckley, A. R. and Pauletti, G. M. (2005) Nitric oxide mediates increased P-glycoprotein activity in interferon-{gamma}-stimulated human intestinal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G533-G540.
  7. Gijbels, K., Van Damme, J., Proost, P., Put, W., Carton, H. and Billiau, A. (1990) Interleukin 6 production in the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 20, 233-235. https://doi.org/10.1002/eji.1830200134
  8. Hao, X. R., Cao, D. L., Hu, Y. W., Li, X. X., Liu, X. H., Xiao, J., Liao, D. F., Xiang, J. and Tang, C. K. (2009) IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 203, 417-428. https://doi.org/10.1016/j.atherosclerosis.2008.07.029
  9. Hartz, A. M., Bauer, B., Fricker, G. and Miller, D. S. (2004) Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. Mol. Pharmacol. 66, 387-394. https://doi.org/10.1124/mol.104.001503
  10. Hartz, A. M., Bauer, B., Fricker, G. and Miller, D. S. (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol. Pharmacol. 69, 462-470.
  11. Huber, J. D., Egleton, R. D. and Davis, T. P. (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24, 719-725. https://doi.org/10.1016/S0166-2236(00)02004-X
  12. Kallmann, B. A., Hummel, V., Lindenlaub, T., Ruprecht, K., Toyka, K. V. and Rieckmann, P. (2000) Cytokine-induced modulation of cellular adhesion to human cerebral endothelial cells is mediated by soluble vascular cell adhesion molecule-1. Brain 123, 687-697. https://doi.org/10.1093/brain/123.4.687
  13. Kipp, H., Pichetshote, N. and Arias, I. M. (2001) Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J. Biol. Chem. 276, 7218-7224. https://doi.org/10.1074/jbc.M007794200
  14. Konsman, J. P., Vigues, S., Mackerlova, L., Bristow, A. and Blomqvist, A. (2004) Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral infl ammatory stimuli. J. Comp. Neurol. 472, 113-129. https://doi.org/10.1002/cne.20052
  15. McCarron, R. M., Wang, L., Racke, M. K., McFarlin, D. E. and Spatz, M. (1993) Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells. J. Neuroimmunol. 43, 23-30. https://doi.org/10.1016/0165-5728(93)90071-6
  16. Ohmori, Y., Schreiber, R. D. and Hamilton, T. A. (1997) Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J. Biol. Chem. 272, 14899-14907. https://doi.org/10.1074/jbc.272.23.14899
  17. Paludan, S. R. (2000) Synergistic action of pro-inflammatory agents: cellular and molecular aspects. J. Leukoc. Biol. 67, 18-25.
  18. Pardridge, W. M. (1988) Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28, 25-39. https://doi.org/10.1146/annurev.pa.28.040188.000325
  19. Perry, V. H., Anthony, D. C., Bolton, S. J. and Brown, H. C. (1997) The blood-brain barrier and the inflammatory response. Mol. Med. Today 3, 335-341. https://doi.org/10.1016/S1357-4310(97)01077-0
  20. Poller, B., Drewe, J., Krahenbühl, S., Huwyler, J. and Gutmann, H. (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell. Mol. Neurobiol. 30, 63-70. https://doi.org/10.1007/s10571-009-9431-1
  21. Puddu, P., Fais, S., Luciani, F., Gherardi, G., Dupuis, M. L., Romagnoli, G., Ramoni, C., Cianfriglia, M. and Gessani, S. (1999) Interferongamma up-regulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages. Lab. Invest. 79, 1299-1309.
  22. Schinkel, A. H., Smit, J. J., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A., van der Valk, M. A., Robanus- Maandag, E. C., te Riele, H. P., Berns, A. J. M. and Borst, P. (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491-502. https://doi.org/10.1016/0092-8674(94)90212-7
  23. Schmitz, H., Fromm, M., Bentzel, C. J., Scholz, P., Detjen, K., Mankertz, J., Bode, H., Epple, H. J., Riecken, E. O. and Schulzke, J. D. (1999) Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci. 112, 137-146.
  24. Spector, R. (1989) Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 53, 1667-1674. https://doi.org/10.1111/j.1471-4159.1989.tb09229.x
  25. Stins, M. F., Gilles, F. and Kim, K. S. (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J. Neuroimmunol. 76, 81-90. https://doi.org/10.1016/S0165-5728(97)00036-2
  26. Tamai, I. and Tsuji, A. (2000) Transporter-mediated permeation of drugs across the blood-brain barrier. J. Pharm. Sci. 89, 1371-1388. https://doi.org/10.1002/1520-6017(200011)89:11<1371::AID-JPS1>3.0.CO;2-D
  27. Theron, D., Barraud de Lagerie, S., Tardivel, S., Pélerin, H., Demeuse, P., Mercier, C., Mabondzo, A., Farinotti, R., Lacour, B., Roux, F. and Gimenez, F. (2003) Influence of tumor necrosis factor-alpha on the expression and function of P-glycoprotein in an immortalised rat brain capillary endothelial cell line, GPNT. Biochem. Pharmacol. 66, 579-587. https://doi.org/10.1016/S0006-2952(03)00340-X
  28. Uceyler, N., Valenza, R., Stock, M., Schedel, R., Sprotte, G. and Sommer, C. (2006) Reduced levels of antiinfl ammatory cytokines in patients with chronic widespread pain. Arthritis. Rheum. 54, 2656-2664. https://doi.org/10.1002/art.22026
  29. Walther, W. and Stein, U. (1994) Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J. Cancer Res. Clin. Oncol. 120, 471-478. https://doi.org/10.1007/BF01191800
  30. Yu, C., Kastin, A. J., Tu, H., Waters, S. and Pan, W. (2007) TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol. Biochem. 20, 853-858. https://doi.org/10.1159/000110445

Cited by

  1. Blockade of Urotensin II Receptor Prevents Vascular Dysfunction vol.24, pp.5, 2016, https://doi.org/10.4062/biomolther.2015.142
  2. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1 vol.151, pp.3, 2014, https://doi.org/10.1016/j.jep.2013.12.033
  3. Hypoxia induces FoxO3a-mediated dysfunction of blood–brain barrier vol.450, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.07.055
  4. Oxidative Stress Induced by Cigarette Smoke Extracts in Human Brain Cells (T98G) and Human Brain Microvascular Endothelial Cells (HBMEC) in Mono- and Co-Culture vol.78, pp.15, 2015, https://doi.org/10.1080/15287394.2015.1043607
  5. Transporter assays as usefulin vitrotools in drug discovery and development vol.11, pp.1, 2016, https://doi.org/10.1517/17460441.2016.1101064
  6. A Novel Urotensin II Receptor Antagonist, KR-36996 Inhibits Smooth Muscle Proliferation through ERK/ROS Pathway vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.219
  7. The decrease of paclitaxel efflux by pretreatment of interferon-γ and tumor necrosis factor-α after intracerebral microinjection vol.1499, 2013, https://doi.org/10.1016/j.brainres.2013.01.005
  8. Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ vol.21, pp.5, 2013, https://doi.org/10.4062/biomolther.2013.065
  9. Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells vol.21, pp.4, 2013, https://doi.org/10.4062/biomolther.2013.051
  10. Chrysin Attenuates VCAM-1 Expression and Monocyte Adhesion in Lipopolysaccharide-Stimulated Brain Endothelial Cells by Preventing NF-κB Signaling vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071424
  11. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells vol.41, 2017, https://doi.org/10.1016/j.tiv.2017.02.010
  12. Immortalized endothelial cell lines for in vitro blood–brain barrier models: A systematic review vol.1642, 2016, https://doi.org/10.1016/j.brainres.2016.04.024