References
- Aguado-Llera, D., Arilla-Ferreiro, E., Campos-Barros, A., Puebla-Jimenez, L. and Barrios, V. (2005) Protective effects of insulin-like growth factor-I on the somatostatinergic system in the temporal cortex of beta-amyloid-treated rats. J. Neurochem. 92, 607-615. https://doi.org/10.1111/j.1471-4159.2004.02889.x
- Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E. and Smith, S. O. (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fi brils. Nat. Struct. Mol. Biol. 17, 561-567. https://doi.org/10.1038/nsmb.1799
- Akiyama, H., Kondo, H., Ikeda, K., Kato, M. and McGeer, P. L. (2001) Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid betaprotein (Abeta) deposition. Brain Res. 902, 277-281. https://doi.org/10.1016/S0006-8993(01)02390-3
- Ayoub, S. and Melzig, M. F. (2006) Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J. Pharm. Pharmacol. 58, 495-501. https://doi.org/10.1211/jpp.58.4.0009
- Baig, S., Kehoe, P. G. and Love, S. (2008) MMP-2, -3 and -9 levels and activity are not related to Abeta load in the frontal cortex in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 34, 205-215. https://doi.org/10.1111/j.1365-2990.2007.00897.x
- Bateman, R. J., Munsell, L. Y., Morris, J. C., Swarm, R., Yarasheski, K. E. and Holtzman, D. M. (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fl uid in vivo. Nat. Med. 12, 856-861. https://doi.org/10.1038/nm1438
- Bell, R. D., Sagare, A.P., Friedman, A. E., Bedi, G. S., Holtzman, D. M., Deane, R. and Zlokovic, B. V. (2007) Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909-918.
- Belyaev, N. D., Nalivaeva, N. N., Makova, N. Z. and Turner, A. J. (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep. 10, 94-100. https://doi.org/10.1038/embor.2008.222
- Bruno, M. A., Mufson, E. J., Wuu, J. and Cuello, A. C. (2009) Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J. Neuropathol. Exp. Neurol. 68, 1309-1318. https://doi.org/10.1097/NEN.0b013e3181c22569
- Bu, G., Cam, J. and Zerbinatti, C. (2006) LRP in amyloid-beta production and metabolism. Ann. N. Y. Acad. Sci. 1086, 35-53. https://doi.org/10.1196/annals.1377.005
- Burgos-Ramos, E., Martos-Moreno, G. A., López, M. G., Herranz, R., Aguado-Llera, D., Egea, J., Frechilla, D., Cenarruzabeitia, E., Leon, R., Arilla-Ferreiro, E., Argente, J. and Barrios, V. (2009a) The N-terminal tripeptide of insulin-like growth factor-I protects against beta-amyloid-induced somatostatin depletion by calcium and glycogen synthase kinase 3 beta modulation. J. Neurochem. 109, 360-370. https://doi.org/10.1111/j.1471-4159.2009.05980.x
- Burgos-Ramos, E., Puebla-Jiménez, L. and Arilla-Ferreiro, E. (2009b) Minocycline prevents Abeta(25-35)-induced reduction of somatostatin and neprilysin content in rat temporal cortex. Life Sci. 84, 205-210. https://doi.org/10.1016/j.lfs.2008.11.019
- Carare, R. O., Bernardes-Silva, M., Newman, T. A., Page, A. M., Nicoll, J. A., Perry, V. H. and Weller, R. O. (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: signifi cance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131-144. https://doi.org/10.1111/j.1365-2990.2007.00926.x
- Castellani, R. J. and Smith, M. A. (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is 'too big to fail'. J. Pathol. 224, 147-152. https://doi.org/10.1002/path.2885
- Choi, D. S., Wang, D., Yu, G. Q., Zhu, G., Kharazia, V. N., Paredes, J. P., Chang, W. S., Deitchman, J. K., Mucke, L. and Messing, R. O. (2006) PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc. Natl. Acad. Sci. USA 103, 8215-8220. https://doi.org/10.1073/pnas.0509725103
- Danielyan, L., Schäfer, R., Schulz, A., Ladewig, T., Lourhmati, A., Buadze, M., Schmitt, A. L., Verleysdonk, S., Kabisch, D., Koeppen, K., Siegel, G., Proksch, B., Kluba, T., Eckert, A., Kohle, C., Schoneberg, T., Northoff, H., Schwab, M. and Gleiter, C. H. (2009) Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin. Cell Death Differ. 16, 1599-1614. https://doi.org/10.1038/cdd.2009.95
- Deane, R., Bell, R. D., Sagare, A. and Zlokovic, B. V. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8, 16-30. https://doi.org/10.2174/187152709787601867
- Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., Xu, F., Parisi, M., LaRue, B., Hu, H. W., Spijkers, P., Guo, H, Song, X, Lenting, P. J., Van Nostrand, W. E. and Zlokovic, B. V. (2004) LRP/amyloid beta-peptide interaction mediates differential brain effl ux of Abeta isoforms. Neuron 43, 333-344. https://doi.org/10.1016/j.neuron.2004.07.017
- Deb, S. and Gottschall, P. E. (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochem. 66, 1641-1647.
- Deb, S., Zhang, J. W. and Gottschall, P. E. (1999) Activated isoforms of MMP-2 are induced in U87 human glioma cells in response to beta-amyloid peptide. J. Neurosci. Res. 55, 44-53. https://doi.org/10.1002/(SICI)1097-4547(19990101)55:1<44::AID-JNR6>3.0.CO;2-G
- Dong, Y. F., Kataoka, K., Tokutomi, Y., Nako, H., Nakamura, T., Toyama, K., Sueta, D., Koibuchi, N., Yamamoto, E., Ogawa, H. and Kim-Mitsuyama, S. (2011) Perindopril, a centrally active angiotensin- converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease. FASEB J. 25, 2911-2920. https://doi.org/10.1096/fj.11-182873
- Eckman, E. A., Adams, S. K., Troendle, F. J., Stodola, B. A., Kahn, M. A., Fauq, A. H., Xiao, H. D., Bernstein, K. E. and Eckman, C. B. (2006) Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin- converting enzyme. J. Biol. Chem. 281, 30471-30478. https://doi.org/10.1074/jbc.M605827200
- Eckman, E. A., Watson, M., Marlow, L., Sambamurti, K. and Eckman, C. B. (2003) Alzheimer's disease beta-amyloid peptide is increased in mice defi cient in endothelin-converting enzyme. J. Biol. Chem. 278, 2081-2084. https://doi.org/10.1074/jbc.C200642200
- Eisele, Y. S., Baumann, M., Klebl, B., Nordhammer, C., Jucker, M. and Kilger, E. (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol. Biol. Cell. 18, 3591-3600. https://doi.org/10.1091/mbc.E07-01-0035
- El-Amouri, S. S., Zhu, H., Yu, J., Marr, R., Verma, I. M. and Kindy, M. S. (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. Am. J. Pathol. 172, 1342-1354. https://doi.org/10.2353/ajpath.2008.070620
- Espuny-Camacho, I., Dominguez, D., Merchiers, P., Van Rompaey, L., Selkoe, D. and De Strooper, B. (2010) Peroxisome proliferatoractivated receptor gamma enhances the activity of an insulin degrading enzyme-like metalloprotease for amyloid-beta clearance. J. Alzheimers Dis. 20, 1119-1132.
- Fabbro, S. and Seeds, N. W. (2009) Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J. Neurochem. 109, 303-315. https://doi.org/10.1111/j.1471-4159.2009.05894.x
- Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E. A., Frosch, M. P., Eckman, C. B., Tanzi, R. E., Selkoe, D. J. and Guenette, S. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162-4167. https://doi.org/10.1073/pnas.0230450100
- Farris, W., Schütz, S. G., Cirrito, J. R., Shankar, G. M., Sun, X., George, A., Leissring, M. A., Walsh, D. M., Qiu, W. Q., Holtzman, D. M. and Selkoe, D. J. (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am. J. Pathol. 171, 241-251. https://doi.org/10.2353/ajpath.2007.070105
-
Floden, A. M. and Combs, C. K. (2011) Microglia demonstrate agedependent interaction with amyloid-
$\beta$ fibrils. J. Alzheimers Dis. 25, 279-293. - Frautschy, S. A., Yang, F., Irrizarry, M., Hyman, B., Saido, T. C., Hsiao, K. and Cole, G. M. (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307-317.
-
Hafez, D., Huang, J. Y., Huynh, A. M., Valtierra, S., Rockenstein, E., Bruno, A. M., Lu, B., DesGroseillers, L., Masliah, E. and Marr, R. A. (2011) Neprilysin-2 is an important
$\beta$ -amyloid degrading enzyme. Am. J. Pathol. 178, 306-312. https://doi.org/10.1016/j.ajpath.2010.11.012 - Hama, E., Shirotani, K., Masumoto, H., Sekine-Aizawa, Y., Aizawa, H. and Saido, T. C. (2001) Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons. J. Biochem. 130, 721-726. https://doi.org/10.1093/oxfordjournals.jbchem.a003040
- Hardy, J. A. and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185. https://doi.org/10.1126/science.1566067
- Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
- Hellström-Lindahl, E., Ravid, R. and Nordberg, A. (2008) Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with A beta levels. Neurobiol. Aging 29, 210-221. https://doi.org/10.1016/j.neurobiolaging.2006.10.010
- Hildebrandt, H., Haldenwanger, A. and Eling, P. (2009) False recognition correlates with amyloid-beta (1-42) but not with total tau in cerebrospinal fl uid of patients with dementia and mild cognitive impairment. J. Alzheimers Dis. 16, 157-165.
-
Hong, H., Baik, T., Song, K., Nam, I., Chung, M., and Jo, S. (Submitted) In silico study of interaction between neurotransmitters and
${\beta}$ -amyloid peptide ($A{\beta}$ ): a novel working hypothesis of$A{\beta}$ -mediated pathogenesis of Alzheimer's disease. - Huang, S. M., Mouri, A., Kokubo, H., Nakajima, R., Suemoto, T., Higuchi, M., Staufenbiel M, Noda, Y., Yamaguchi, H., Nabeshima, T., Saido, T. C. and Iwata, N. (2006) Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. 281, 17941-17951. https://doi.org/10.1074/jbc.M601372200
- Iwata, N., Mizukami, H., Shirotani, K., Takaki, Y., Muramatsu, S., Lu, B., Gerard, N. P., Gerard, C., Ozawa, K. and Saido, T. C. (2004) Presynaptic localization of neprilysin contributes to effi cient clearance of amyloid-beta peptide in mouse brain. J. Neurosci. 24, 991-998. https://doi.org/10.1523/JNEUROSCI.4792-03.2004
- Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P, Gerard, C., Hama, E., Lee, H. J. and Saido, T. C. (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292, 1550-1552. https://doi.org/10.1126/science.1059946
- Jacobsen, J. S., Comery, T. A., Martone, R. L., Elokdah, H., Crandall, D. L., Oganesian, A., Aschmies, S., Kirksey, Y., Gonzales, C., Xu, J., Zhou, H., Atchison, K., Wagner, E., Zaleska, M. M., Das, I., Arias, R. L., Bard, J., Riddell, D., Gardell, S. J., Abou-Gharbia, M., Robichaud, A., Magolda, R., Vlasuk, G. P., Bjornsson, T., Reinhart, P. H. and Pangalos, M. N. (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc. Natl. Acad. Sci. USA 105, 8754-8759. https://doi.org/10.1073/pnas.0710823105
- Jaeger, L. B., Dohgu, S., Hwang, M. C., Farr, S. A., Murphy, M. P., Fleegal-DeMotta, M. A., Lynch, J. L., Robinson, S. M., Niehoff, M. L., Johnson, S. N., Kumar, V. B. and Banks, W. A. (2009) Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J. Alzheimers Dis. 17, 553-570.
- Jarrett, J. T., Berger, E. P. and Lansbury, P. T. Jr. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693-4697. https://doi.org/10.1021/bi00069a001
- Jo, S. A., Ahn, K., Kim, E., Kim, H. S., Jo, I., Kim, D. K., Han, C. and Park, M. H. (2008) Association of BACE1 gene polymorphism with Alzheimer's disease in Asian populations: meta-analysis including Korean samples. Dement. Geriatr. Cogn. Disord. 25, 165-169. https://doi.org/10.1159/000112918
- Jung, S. S., Zhang, W. and Van Nostrand, W. E. (2003) Pathogenic A beta induces the expression and activation of matrix metalloproteinase- 2 in human cerebrovascular smooth muscle cells. J. Neurochem. 85, 1208-1215. https://doi.org/10.1046/j.1471-4159.2003.01745.x
- Kalinin, S., Richardson, J. C. and Feinstein, D. L. (2009) A PPARdelta agonist reduces amyloid burden and brain infl ammation in a transgenic mouse model of Alzheimer's disease. Curr. Alzheimer. Res. 6, 431-437. https://doi.org/10.2174/156720509789207949
-
Kim, J. Y., Kim, D. H., Kim, J. H., Lee, D., Jeon, H. B., Kwon, S. J., Kim, S. M., Yoo, Y. J., Lee, E. H., Choi, S. J., Seo, S. W., Lee, J. I., Na, D. L., Yang, Y. S., Oh, W. and Chang, J. W. (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-
${\beta}$ plaques. Cell Death Differ. 19, 680-691. https://doi.org/10.1038/cdd.2011.140 - Kim, K. W., Park, J. H., Kim, M. H., Kim, M. D., Kim, B. J., Kim, S. K., Kim, J. L., Moon, S. W., Bae, J. N., Woo, J. I., Ryu, S. H., Yoon, J. C., Lee, N. J., Lee, D. Y., Lee, D. W., Lee, S. B., Lee, J. J., Lee JY, Lee CU, Chang, S. M., Jhoo, J. H. and Cho, M. J. (2011a) A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. J. Alzheimers Dis. 23, 281-291.
- Kim, M. J., Chae, S. S., Koh, Y. H. Lee, S. K. and Jo, S. A. (2010) Glutamate carboxypeptidase II: an amyloid peptide-degrading enzyme with physiological function in the brain. FASEB J. 24, 4491-4502. https://doi.org/10.1096/fj.09-148825
-
Kim, T., Hinton, D. J. and Choi, D. S. (2011b) Protein kinase C-regulated a
${\beta}$ production and clearance. Int. J. Alzheimers Dis. 857368. - Kiss, A., Kowalski, J. and Melzig, M. F. (2006) Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 61, 66-69.
- Krauze, M. T., Saito, R., Noble, C., Bringas, J., Forsayeth, J., McKnight, T. R., Park, J. and Bankiewicz, K. S. (2005) Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp. Neurol. 196, 104-111. https://doi.org/10.1016/j.expneurol.2005.07.009
- Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128-1132. https://doi.org/10.1038/nature07761
- Leal, M. C., Dorfman, V. B., Gamba, A. F., Frangione, B., Wisniewski, T., Castaño, E. M., Sigurdsson, E. M. and Morelli, L. (2006) Plaqueassociated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology. J. Neuropathol. Exp. Neurol. 65, 976-987. https://doi.org/10.1097/01.jnen.0000235853.70092.ba
-
Leal, M. C., Surace, E. I., Holgado, M. P., Ferrari, C. C., Tarelli, R., Pitossi, F., Wisniewski, T., Castaño, E. M. and Morelli, L. (2012) Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular A
${\beta}$ metabolism. Biochim. Biophys. Acta 1823, 227-235. https://doi.org/10.1016/j.bbamcr.2011.09.014 - Lee, J. M., Yin, K. J., Hsin, I., Chen, S., Fryer, J. D., Holtzman, D. M., Hsu, C. Y. and Xu, J. (2003) Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann. Neurol. 54, 379-382. https://doi.org/10.1002/ana.10671
- Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., Frosch, M. P. and Selkoe, D. J. (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087-1093. https://doi.org/10.1016/S0896-6273(03)00787-6
- Liang, K., Yang, L., Yin, C., Xiao, Z., Zhang, J., Liu, Y. and Huang, J. (2010) Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J. Biol. Chem. 285, 935-942. https://doi.org/10.1074/jbc.M109.051664
- Liu, Y., Studzinski, C., Beckett, T., Murphy, M. P., Klein, R. L. and Hersh, L. B. (2010) Circulating neprilysin clears brain amyloid. Mol. Cell Neurosci. 45, 101-107. https://doi.org/10.1016/j.mcn.2010.05.014
- Love, S. (2004) Contribution of cerebral amyloid angiopathy to Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1-4. https://doi.org/10.1136/jnnp.2003.034249
- Madani, R., Poirier, R., Wolfer, D. P., Welzl, H., Groscurth, P., Lipp, H. P., Lu, B., El Mouedden, M., Mercken, M., Nitsch, R. M. and Mohajeri, M. H. (2006) Lack of neprilysin suffi ces to generate murine amyloid-like deposits in the brain and behavioral defi cit in vivo. J. Neurosci. Res. 84, 1871-1878. https://doi.org/10.1002/jnr.21074
- Marr, R. A., Rockenstein, E., Mukherjee, A., Kindy, M. S., Hersh, L. B., Gage, F. H., Verma, I. M. and Masliah, E. (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 1992-1996.
- Meilandt, W. J., Cisse, M., Ho, K., Wu, T., Esposito, L. A., Scearce- Levie, K., Cheng, I. H., Yu, G. Q. and Mucke, L. (2009) Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive defi cits in human amyloid precursor protein transgenic mice. J. Neurosci. 29, 1977-1986. https://doi.org/10.1523/JNEUROSCI.2984-08.2009
- Melino, G., Draoui, M., Bernardini, S., Bellincampi, L., Reichert, U. and Cohen, P. (1996) Regulation by retinoic acid of insulin-degrading enzyme and of a related endoprotease in human neuroblastoma cell lines. Cell Growth Differ. 7, 787-796.
- Melzig, M. F. and Escher, F. (2002) Induction of neutral endopeptidase and angiotensin-converting enzyme activity of SK-N-SH cells in vitro by quercetin and resveratrol. Pharmazie 57, 556-558.
- Melzig, M. F. and Janka, M. (2003) Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine 10, 494-498. https://doi.org/10.1078/094471103322331449
- Miller, B. C., Eckman, E. A., Sambamurti, K., Dobbs, N., Chow, K. M., Eckman, C. B., Hersh, L. B. and Thiele, D. L. (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. USA 100, 6221-6226. https://doi.org/10.1073/pnas.1031520100
- Miners, J. S., Ashby, E., Van Helmond, Z., Chalmers, K. A., Palmer, L. E., Love, S. and Kehoe, P. G. (2008a) Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 34, 181-193. https://doi.org/10.1111/j.1365-2990.2007.00885.x
- Miners, J. S., Baig, S., Tayler, H., Kehoe, P. G. and Love, S. (2009) Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J. Neuropathol. Exp. Neurol. 68, 902-914. https://doi.org/10.1097/NEN.0b013e3181afe475
- Miners, J. S., Kehoe, P. G. and Love, S. (2008b) Immunocapturebased fluorometric assay for the measurement of insulin-degrading enzyme activity in brain tissue homogenates. J. Neurosci. Methods 169, 177-181. https://doi.org/10.1016/j.jneumeth.2007.12.003
-
Miners, J. S., Morris, S., Love, S. and Kehoe, P. G. (2011) Accumulation of insoluble amyloid-
${\beta}$ in down's syndrome is associated with increased BACE-1 and neprilysin activities. J. Alzheimers Dis. 23, 101-108. - Miners, J. S., van Helmond, Z., Chalmers, K., Wilcock, G., Love, S. and Kehoe, P. G. (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 65, 1012-1021. https://doi.org/10.1097/01.jnen.0000240463.87886.9a
- Miners, J. S., van Helmond, Z., Kehoe, P. G. and Love, S. (2010) Changes with age in the activities of beta-secretase and the Abetadegrading enzymes neprilysin, insulin-degrading enzyme and angiotensin- converting enzyme. Brain Pathol. 20, 794-802. https://doi.org/10.1111/j.1750-3639.2010.00375.x
-
Miners, J. S., van Helmond, Z., Raiker, M., Love, S. and Kehoe, P. G. (2010) ACE variants and association with brain A
${\beta}$ levels in Alzheimer's disease. Am. J. Transl. Res. 3, 73-80. - Miners, J. S., Verbeek, M. M., Rikkert, M. O., Kehoe, P. G. and Love, S. (2008c) Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissue homogenates and cerebrospinal fluid. J. Neurosci. Methods 167, 229-236. https://doi.org/10.1016/j.jneumeth.2007.08.012
- Mohajeri, M. H., Wollmer, M. A. and Nitsch, R. M. (2002) Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277, 35460-35465. https://doi.org/10.1074/jbc.M202899200
- Monro, O. R., Mackic, J. B., Yamada, S., Segal, M. B., Ghiso, J., Maurer, C., Calero, M., Frangione, B. and Zlokovic, B. V. (2002) Substitution at codon 22 reduces clearance of Alzheimer's amyloid-beta peptide from the cerebrospinal fl uid and prevents its transport from the central nervous system into blood. Neurobiol. Aging 23, 405-412. https://doi.org/10.1016/S0197-4580(01)00317-7
- Mouri, A., Zou, L. B., Iwata, N., Saido, T. C., Wang, D., Wang, M. W., Noda, Y. and Nabeshima, T. (2006) Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid beta and impairment of learning and memory. Behav. Brain Res. 168, 83-91. https://doi.org/10.1016/j.bbr.2005.10.014
- Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L. and Gan, L. (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703-714. https://doi.org/10.1016/j.neuron.2006.07.027
- Naert, G. and Rivest, S. (2011) The role of microglial cell subsets in Alzheimer's disease. Curr. Alzheimer Res. 8, 151-155. https://doi.org/10.2174/156720511795256035
- Nalivaeva, N. N., Beckett, C., Belyaev, N. D. and Turner, A. J. (2012) Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J. Neurochem. 120 Suppl 1, 167-185. https://doi.org/10.1111/j.1471-4159.2011.07510.x
- Narita, M., Holtzman, D. M., Schwartz, A. L. and Bu, G. (1997) Alpha2- macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor- related protein. J. Neurochem. 69, 1904-1911.
- Nielsen, H. M., Veerhuis, R., Holmqvist, B. and Janciauskiene, S. (2009) Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57, 978-988. https://doi.org/10.1002/glia.20822
- Numata, K. and Kaplan, D. L. (2010) Mechanisms of enzymatic degradation of amyloid Beta microfi brils generating nanofi laments and nanospheres related to cytotoxicity. Biochemistry 49, 3254-3260. https://doi.org/10.1021/bi902134p
- Palmer, J. C., Baig, S., Kehoe, P. G. and Love, S. (2009) Endothelinconverting enzyme-2 is increased in Alzheimer's disease and upregulated by Abeta. Am. J. Pathol. 175, 262-270. https://doi.org/10.2353/ajpath.2009.081054
-
Palmer, J. C., Barker, R., Kehoe, P. G. and Love, S. (2012) Endothelin- 1 is Elevated in Alzheimer's Disease and Upregulated by Amyloid-
${\beta}$ . J. Alzheimers Dis. 29, 853-861. - Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., Ring, S., D'Adamio, L., Shen, J., Müller, U., St George Hyslop, P. and Checler, F. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46, 541-554. https://doi.org/10.1016/j.neuron.2005.04.008
-
Pflanzner, T., Petsch, B., Andre-Dohmen, B., Muller-Schiffmann, A., Tschickardt, S., Weggen, S., Stitz, L., Korth, C. and Pietrzik, C. U. (2012) Cellular prion protein participates in amyloid-
${\beta}$ transcytosis across the blood-brain barrier. J. Cereb. Blood Flow Metab. 32, 628-632. https://doi.org/10.1038/jcbfm.2012.7 - Pike, C. J, Walencewicz-Wasserman, A. J., Kosmoski, J., Cribbs, D. H., Glabe, C. G. and Cotman, C. W. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J. Neurochem. 64, 253-265.
- Poirier, R., Wolfer, D. P., Welzl, H., Tracy, J., Galsworthy, M. J., Nitsch, R. M. and Mohajeri, M. H. (2006) Neuronal neprilysin overexpression is associated with attenuation of Abeta-related spatial memory deficit. Neurobiol. Dis. 24, 475-483. https://doi.org/10.1016/j.nbd.2006.08.003
- Pulukuri, S. M., Estes, N., Patel, J. and Rao, J. S. (2007) Demethylation- linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res. 67, 930-939. https://doi.org/10.1158/0008-5472.CAN-06-2892
- Rogers, J., Strohmeyer, R., Kovelowski, C. J. and Li, R. (2002) Microglia and infl ammatory mechanisms in the clearance of amyloid beta peptide. Glia 40, 260-269. https://doi.org/10.1002/glia.10153
- Russo, R., Borghi, R., Markesbery, W., Tabaton, M. and Piccini, A. (2005) Neprylisin decreases uniformly in Alzheimer's disease and in normal aging. FEBS Lett. 579, 6027-6030. https://doi.org/10.1016/j.febslet.2005.09.054
- Rylski, M., Amborska, R., Zybura, K., Michaluk, P., Bielinska, B., Konopacki, F. A., Wilczynski, G. M. and Kaczmarek, L. (2009) JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol. Cell Neurosci. 40, 98-110. https://doi.org/10.1016/j.mcn.2008.09.005
- Rylski, M., Amborska, R., Zybura, K., Mioduszewska, B., Michaluk, P., Jaworski, J. and Kaczmarek, L. (2008) Yin Yang 1 is a critical repressor of matrix metalloproteinase-9 expression in brain neurons. J. Biol. Chem. 283, 35140-35153. https://doi.org/10.1074/jbc.M804540200
-
Sagare, A. P., Deane, R., Zetterberg, H., Wallin, A., Blennow, K. and Zlokovic, B. V. (2011) Impaired lipoprotein receptor-mediated peripheral binding of plasma amyloid-
${\beta}$ is an early biomarker for mild cognitive impairment preceding Alzheimer's disease. J. Alzheimers Dis. 24, 25-34. - Sagare, A., Deane, R., Bell, R. D., Johnson, B., Hamm, K., Pendu, R., Marky, A., Lenting, P. J., Wu, Z., Zarcone, T., Goate, A., Mayo, K., Perlmutter, D., Coma, M., Zhong, Z. and Zlokovic, B. V. (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat. Med. 13, 1029-1031. https://doi.org/10.1038/nm1635
- Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., Suemoto, T., Higuchi, M. and Saido, T. C. (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat. Med. 11, 434-439. https://doi.org/10.1038/nm1206
- Savaskan, E., Hock, C., Olivieri, G., Bruttel, S., Rosenberg, C., Hulette, C. and Müller-Spahn, F. (2001) Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol. Aging 22, 541-546. https://doi.org/10.1016/S0197-4580(00)00259-1
- Sehgal, N., Gupta, A., Valli, R. K., Joshi, S. D., Mills, J. T., Hamel, E., Khanna, P., Jain, S. C., Thakur, S. S. and Ravindranath, V. (2012) Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA 109, 3510-3515. https://doi.org/10.1073/pnas.1112209109
- Selkoe, D. J. (1991) Alzheimer's disease. In the beginning... Nature 354, 432-433. https://doi.org/10.1038/354432a0
- Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., Holtzman, D. M., Miller, C. A., Strickland, D. K., Ghiso, J. and Zlokovic, B. V. (2000) Clearance of Alzheimer's amyloidss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489-1499. https://doi.org/10.1172/JCI10498
- Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. and Rivest, S. (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489-502. https://doi.org/10.1016/j.neuron.2006.01.022
- Spencer, B., Marr, R. A., Rockenstein, E., Crews, L., Adame, A., Potkar, R., Patrick, C., Gage, F. H., Verma, I. M. and Masliah, E. (2008) Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci. 9, 109. https://doi.org/10.1186/1471-2202-9-109
- Tanzi, R. E. and Bertram, L. (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545-555. https://doi.org/10.1016/j.cell.2005.02.008
- Tucker, H. M., Kihiko, M., Caldwell, J. N., Wright, S., Kawarabayashi, T., Price, D., Walker, D., Scheff, S., McGillis, J. P., Rydel, R. E. and Estus, S. (2000) The plasmin system is induced by and degrades amyloid-beta aggregates. J. Neurosci. 20, 3937-3946.
- Tucker, H. M., Simpson, J., Kihiko-Ehmann, M., Younkin, L. H., McGillis, J. P., Younkin, S. G., Degen, J. L. and Estus, S. (2004) Plasmin defi ciency does not alter endogenous murine amyloid beta levels in mice. Neurosci. Lett. 368, 285-289. https://doi.org/10.1016/j.neulet.2004.07.011
- Viswanathan, A. and Greenberg, S. M. (2011) Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871-880. https://doi.org/10.1002/ana.22516
- Wang, H. Y., Lee, D. H., Davis, C. B. and Shank, R. P. (2000) Amyloid peptide Abeta(1-42) binds selectively and with picomolar affi nity to alpha7 nicotinic acetylcholine receptors. J. Neurochem. 75, 1155-1161.
- Wang, R., Wang, S., Malter, J. S. and Wang, D. S. (2009a) Effects of 4-hydroxy-nonenal and Amyloid-beta on expression and activity of endothelin converting enzyme and insulin degrading enzyme in SH-SY5Y cells. J. Alzheimers Dis. 17, 489-501.
- Wang, R., Wang, S., Malter, J. S. and Wang, D. S. (2009b) Effects of HNE-modifi cation induced by Abeta on neprilysin expression and activity in SH-SY5Y cells. J. Neurochem. 108, 1072-1082. https://doi.org/10.1111/j.1471-4159.2008.05855.x
- Weller, R. O., Massey, A., Kuo, Y. M. and Roher, A. E. (2000) Cerebral amyloid angiopathy: accumulation of A beta in interstitial fl uid drainage pathways in Alzheimer's disease. Ann. N. Y. Acad. Sci. 903, 110-117. https://doi.org/10.1111/j.1749-6632.2000.tb06356.x
- Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. and Carare, R. O. (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol. 18, 253-266.
- Wyss-Coray, T. (2006) Inflammation in Alzheimer disease: driving force, bystander or benefi cial response? Nat. Med. 12, 1005-1015.
- Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9, 453-457. https://doi.org/10.1038/nm838
- Xiao, Z. M., Sun, L., Liu, Y. M., Zhang, J. J. and Huang, J. (2009) Estrogen regulation of the neprilysin gene through a hormone-responsive element. J. Mol. Neurosci. 39, 22-26. https://doi.org/10.1007/s12031-008-9168-1
- Yan, P., Hu, X., Song, H., Yin, K., Bateman, R. J., Cirrito, J. R., Xiao, Q., Hsu, F. F., Turk, J. W., Xu, J., Hsu, C. Y., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinase-9 degrades amyloidbeta fi brils in vitro and compact plaques in situ. J. Biol. Chem. 281, 24566-24574. https://doi.org/10.1074/jbc.M602440200
- Yang, L., Xu, S., Liu, C. and Su, Z. (2009) In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 395, 1441-1451. https://doi.org/10.1007/s00216-009-3121-1
-
Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid- modulated exosome secretion promotes the clearance of amyloid-
${\beta}$ by microglia. J. Biol. Chem. [Epub ahead of print] - Zou, L. B., Mouri, A., Iwata, N., Saido, T. C., Wang, D., Wang, M. W., Mizoguchi, H., Noda, Y. and Nabeshima, T. (2006) Inhibition of neprilysin by infusion of thiorphan into the hippocampus causes an accumulation of amyloid Beta and impairment of learning and memory. J. Pharmacol. Exp. Ther. 317, 334-340.
Cited by
- Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer's disease experimental models vol.37, pp.1, 2013, https://doi.org/10.5142/jgr.2013.37.100
- The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy vol.6, 2016, https://doi.org/10.1016/j.ebiom.2016.03.035
- Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications vol.48, pp.4, 2015, https://doi.org/10.3233/JAD-150379
- Sleep Facilitates Clearance of Metabolites from the Brain: Glymphatic Function in Aging and Neurodegenerative Diseases vol.16, pp.6, 2013, https://doi.org/10.1089/rej.2013.1530
- Clearance systems in the brain—implications for Alzheimer disease vol.11, pp.8, 2015, https://doi.org/10.1038/nrneurol.2015.119
- Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? 2017, https://doi.org/10.1080/1061186X.2017.1354002
- Role of RAGE in Alzheimer’s Disease vol.36, pp.4, 2016, https://doi.org/10.1007/s10571-015-0233-3
- Effect ofLycoris chejuensisand Its Active Components on Experimental Models of Alzheimer’s Disease vol.63, pp.31, 2015, https://doi.org/10.1021/acs.jafc.5b00889
- Sleep, Cognition and Dementia vol.17, pp.12, 2015, https://doi.org/10.1007/s11920-015-0631-8
- Mechanisms of Aβ Clearance and Degradation by Glial Cells vol.8, 2016, https://doi.org/10.3389/fnagi.2016.00160
- Intracranial Arterial 4D Flow in Individuals with Mild Cognitive Impairment is Associated with Cognitive Performance and Amyloid Positivity vol.60, pp.1, 2017, https://doi.org/10.3233/JAD-170402
- The Translational Significance of the Neurovascular Unit vol.292, pp.3, 2017, https://doi.org/10.1074/jbc.R116.760215
- Stimulating the Activity of Amyloid-Beta Degrading Enzymes: A Novel Approach for the Therapeutic Manipulation of Amyloid-Beta Levels vol.54, pp.3, 2016, https://doi.org/10.3233/JAD-160492
- Spinosin, a C-Glucosylflavone, from Zizyphus jujuba var. spinosa Ameliorates Aβ1–42 Oligomer-Induced Memory Impairment in Mice vol.23, pp.2, 2015, https://doi.org/10.4062/biomolther.2014.110
- Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin vol.138, 2015, https://doi.org/10.1016/j.exer.2015.06.027
- The Neuroprotective Effects of Justicidin A on Amyloid Beta25–35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells vol.41, pp.6, 2016, https://doi.org/10.1007/s11064-016-1857-5
- The Integrative Five-Fluid Circulation System in the Human Body vol.06, pp.04, 2016, https://doi.org/10.4236/ojmip.2016.64005
- Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response vol.2017, 2017, https://doi.org/10.1155/2017/5906189
- Effect of conjugated linoleic acid, μ-calpain inhibitor, on pathogenesis of Alzheimer's disease vol.1831, pp.4, 2013, https://doi.org/10.1016/j.bbalip.2012.12.003
- Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats vol.8, 2017, https://doi.org/10.3389/fphar.2017.00039
- Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139574
- Resveratrol and Amyloid-Beta: Mechanistic Insights vol.9, pp.10, 2017, https://doi.org/10.3390/nu9101122
- Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice pp.10156305, 2018, https://doi.org/10.1111/bpa.12656
- Hormone replacement therapy and Alzheimers disease in older women: A systematic review of literature vol.10, pp.1, 2018, https://doi.org/10.5897/JNBH2017.0148
- Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPRER) in Managing Clandestine Modus Operandi of Alzheimer’s Disease vol.10, pp.1663-4365, 2018, https://doi.org/10.3389/fnagi.2018.00030
- Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer’s disease patients pp.1433-8491, 2018, https://doi.org/10.1007/s00406-018-0905-3
- Evaluation of Aβ Deposits in the Hippocampus of a Rat Model of Alzheimer’s Disease After Intravenous Injection of Human Adipose Derived Stem Cells by Immuno- and Thioflavin S-Costaining vol.In Press, pp.In Press, 2019, https://doi.org/10.5812/thrita.88367
- Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway vol.14, pp.6, 2012, https://doi.org/10.3892/etm.2017.5253
- Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells vol.4, pp.8, 2012, https://doi.org/10.1021/acsbiomaterials.8b00021
- The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimer’s disease vol.55, pp.1, 2012, https://doi.org/10.1186/s41983-019-0094-7
- Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease vol.26, pp.18, 2019, https://doi.org/10.2174/0929867326666190124123208
- Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease vol.27, pp.1, 2012, https://doi.org/10.4062/biomolther.2018.051
- Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein vol.27, pp.3, 2012, https://doi.org/10.4062/biomolther.2018.112
- Autophagy Modulation as a Treatment of Amyloid Diseases vol.24, pp.18, 2012, https://doi.org/10.3390/molecules24183372
- Decreased plasmatic spermidine and increased spermine in mild cognitive impairment and Alzheimer’s disease patients vol.46, pp.5, 2012, https://doi.org/10.1590/0101-60830000000209
- Neutral Endopeptidase (Neprilysin) in Therapy and Diagnostics: Yin and Yang vol.84, pp.11, 2012, https://doi.org/10.1134/s0006297919110105
- Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model vol.10, pp.1, 2012, https://doi.org/10.1038/s41467-019-09118-9
- Plasma amyloid beta level changes in aged mice with cognitive dysfunction following sevoflurane exposure vol.129, pp.None, 2012, https://doi.org/10.1016/j.exger.2019.110737
- Fungicide Residues Exposure and [FORMULA OMISSION] Aggregation in a Mouse Model of Alzheimer’s Disease vol.128, pp.1, 2012, https://doi.org/10.1289/ehp5550
- P‐glycoprotein: a role in the export of amyloid‐β in Alzheimer's disease? vol.287, pp.4, 2020, https://doi.org/10.1111/febs.15148
- Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies vol.21, pp.2, 2012, https://doi.org/10.2174/1389450120666190806153206
- The Positive Side of the Alzheimer’s Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1 vol.25, pp.10, 2020, https://doi.org/10.3390/molecules25102439
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues vol.31, pp.4, 2012, https://doi.org/10.1515/revneuro-2019-0089
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues vol.31, pp.4, 2012, https://doi.org/10.1515/revneuro-2019-0089
- Comparison of Synthetic Neuronal Model Membrane Mimics in Amyloid Aggregation at Atomic Resolution vol.11, pp.13, 2020, https://doi.org/10.1021/acschemneuro.0c00166
- Acoustofluidic assembly of 3D neurospheroids to model Alzheimer's disease vol.145, pp.19, 2020, https://doi.org/10.1039/d0an01373k
- Aluminum chloride-induced amyloid β accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin vol.146, pp.None, 2012, https://doi.org/10.1016/j.fct.2020.111829
- Repellent Effects of Selected Organic Leaf Extracts of Tithonia diversifolia (Hemsl.) A. Gray and Vernonia lasiopus (O. Hoffman) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/2718629
- Secondary Prevention of Dementia: Combining Risk Factors and Scalable Screening Technology vol.12, pp.None, 2021, https://doi.org/10.3389/fneur.2021.772836
- Tumour suppression through modulation of neprilysin signaling: A comprehensive review vol.891, pp.None, 2012, https://doi.org/10.1016/j.ejphar.2020.173727
- Blood-Brain Barrier Disruption Increases Amyloid-Related Pathology in TgSwDI Mice vol.22, pp.3, 2012, https://doi.org/10.3390/ijms22031231
- Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer’s Disease vol.79, pp.4, 2012, https://doi.org/10.3233/jad-201007
- Phagocytic Glial Cells in Brain Homeostasis vol.10, pp.6, 2012, https://doi.org/10.3390/cells10061348
- Idebenone Decreases Aβ Pathology by Modulating RAGE/Caspase-3 Signaling and the Aβ Degradation Enzyme NEP in a Mouse Model of AD vol.10, pp.9, 2012, https://doi.org/10.3390/biology10090938
- Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings vol.10, pp.10, 2012, https://doi.org/10.3390/cells10102581
- Chronic Rhinosinusitis and Alzheimer’s Disease-A Possible Role for the Nasal Microbiome in Causing Neurodegeneration in the Elderly vol.22, pp.20, 2021, https://doi.org/10.3390/ijms222011207
- Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes vol.42, pp.11, 2021, https://doi.org/10.1002/bkcs.12390
- Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction vol.27, pp.6, 2012, https://doi.org/10.1177/1073858420954811
- Change in the plasma proteome associated with canine cognitive dysfunction syndrome (CCDS) in Thailand vol.17, pp.1, 2012, https://doi.org/10.1186/s12917-021-02744-w