DOI QR코드

DOI QR Code

Effect of Amino Silane Coupling Agent on the AC Electrical Breakdown Phenomena of Epoxy/Layered Silicate Nanocomposite in Needle-plate Electrodes

  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2012.04.23
  • Accepted : 2012.05.01
  • Published : 2012.06.25

Abstract

The effects of amino silane coupling agent on the AC electrical treeing and breakdown behaviors in an epoxy/layered silicate (1 wt%) were examined in needle-plate electrode geometry. A layered silicate was exfoliated in an epoxy base resin by using our AC electric field apparatus. To measure the tree initiation and propagation and the breakdown rate, an alternating current (AC) of 10 kV (60 Hz) was applied to the specimen in needle-plate electrode arrangement with a $30^{\circ}C$ insulating oil bath. In the epoxy/amino silane system, the tree initiation time was 11.5 times higher and the breakdown time was 17.9 times higher than those of the neat epoxy resin. The tree initiation time in the epoxy/layered silicate (1 wt%) system with the amino silane was 2.0 times higher, and the breakdown time was 1.5 times higher than those of the epoxy/layered silicate (1 wt%) system.

Keywords

References

  1. L. W. Jang, C. M. Kang and D. C. Lee, J. Polym. Sci.: Part B, 39, 719 (2001) [DOI: 10.1002/1099-0488(20010315)].
  2. D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI: 10.1002/app.10166].
  3. L. Zhang, Y. Z. Wang, Y. Q. Wang, Y. Sui and D. S. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: 10.1002/1097-4628(20001209)].
  4. H. L. Tyan, K. H. Wei and T. E. Hsieh, J. Polym. Sci.: Part B, 38, 2873 (2000) [DOI: 10.1002/1099-0488(20001115)].
  5. K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: 10.1002/polb.1108].
  6. X. Kornmann, "Synthesis and Characterisation of Thermoset-Clay Nanocomposites", Ph.D. dissertation from Lulea, Lulea Tekniska University, Sweden, pp. 13-17 (2001).
  7. H. G. Jeon, H. T. Jung and S. D. Hudson, Polymer Bulletin, 41, 107 (1998) [DOI: 10.1007/s002890050339].
  8. L. Liu, Z. Qi and X. Zhu, J. Appl. Polym. Sci., 71, 1133 (1999) [DOI: 10.1002/(SICI)1097-4628(19990214)].
  9. R. A. Vaia, K. D. Jandt, E. J. Kramer and E. P. Giannelis, Chem. Mater., 8, 2628 (1996) [DOI: 10.1021/cm960102h].
  10. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010) [DOI: 10.1109/TDEI.2010.5595553].
  11. J. J. Park, C. H. Lee, J. Y. Lee and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011) [DOI: 10.1109/TDEI.2011.5931051].
  12. T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki and T. Shimizu, IEEE Annual Report Conference on CEIDP, p.237 (2004) [DOI: 10.1109/CEIDP.2004.1364232].
  13. X. Zheng and G. Chen, IEEE Trans. Dielectr. Electr. Insul., 15, 800 (2008) [DOI: 10.1109/TDEI.2008.4543118].
  14. R. Vogelsang, R. Brutsch and T. Frohlich, Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, p.946 (2002).
  15. Y. Chen, T. Imai, Y. Ohki and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 17, 1509 (2010) [DOI: 10.1109/TDEI.2010.5595552].
  16. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 445 (2006) [DOI: 10.1109/TDEI.2006.1624291].
  17. K. Theodosiou and I. Gialas, J. Electr. Eng., 59, 248 (2008).

Cited by

  1. DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation vol.53, pp.8S3, 2014, https://doi.org/10.7567/JJAP.53.08NL05