Comparison of Growth Characteristics Between 5-year-old emblings Derived form Somatic Embryos and Seedlings in Liriodendron tulipifera

백합나무 5년생 체세포배 유래 클론배양묘 및 실생묘 간의 생장특성 비교

  • Kim, Yong Wook (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Moon, Heung Kyu (Division of Forest Biotechnology, Korea Forest Research Institute)
  • 김용욱 (국립산림과학원 산림생명공학과) ;
  • 문흥규 (국립산림과학원 산림생명공학과)
  • Published : 2012.12.31

Abstract

The 5-year-old seedlings and emblings which regenerated from somatic embryos were compared to the height, DBH, foliar characteristics, content of chlorophyll (chlorophyll a, b and total chlorophyll), carotenoid and leaf microstructure in Liriodendron tulipifera. In comparison of height and DBH (diameter at breast height), no significant differences were found in height (seedling, 3.8 m; embling, 3.87 m) and DBH (seedling, 12.09 cm; embling, 12.53 cm). The emblings and seedlings were similar in values of length (seedling, 108.11 mm, embling, 113.59 mm), width (seedling, 149.1 mm; embling, 167.71 mm), surface area (seedling, $119.92mm^2$; embling, $164.43mm^2$), fresh weight (seedling, 2.1 g; embling, 2.62 g) of leaf, and length (seedling, 81.49 mm; embling, 98.41 mm) and thickness (seedling, 1.66 mm; embling, 1.98 mm) of petiole. In case of chlorophyll content in the leaves, the chlorophyll a (seedlings, $11.2{\mu}g/g$; emblings, $13.2{\mu}g/g$), b (seedlings, $4.8{\mu}g/g$; emblings, $5.4{\mu}g/g$) and total content were higher in emblings ($930.2{\mu}g/g$) than seedlings ($800.1{\mu}g/g$), however, content of carotenoid (seedlings, $260.3{\mu}g/g$; embling, $265.2{\mu}g/g$) showed similar in both plants. Leaves of emblings had a similar pattern of histological structure (palisade or sponge parenchyma) to that of seedlings leaves. Therefore, the results showed that there were no remarkable growth differences when compared with 5-year-emblings and seedlings of yellow poplar.

본 연구는 백합나무 5년생의 실생묘와 체세포배 유래 식물체(클론배양묘, embling) 간의 수고, 흉고직경, 엽 형질, 엽록소 함량 및 엽 조직의 미세구조 비교를 위해 수행되었다. 수고비교의 경우 실생묘의 평균 수고는 3.8 m, 클론배양묘의 경우 3.87 m로 나타나 두 식물체 간에는 거의 차이가 없었고 줄기직경은 실생묘가 12.09 cm, 클론배양묘는 12.53 cm로 나타났지만 큰 차이는 없었다. 엽 특성비교에서는 엽장(실생묘, 108.11 mm; 클론배양묘, 113.59 mm), 엽 폭(실생묘, 149.1 mm; 클론배양묘, 167.71 mm), 엽 면적(실생묘, $119.92mm^2$; 클론배양묘, $164.43mm^2$), 엽 생중량(실생묘, 2.1 g; 클론배양묘, 2.62 g), 엽병 길이(실생묘 81.49 mm; 클론배양묘, 98.41 mm) 및 엽병 두께(실생묘 1.66 mm; 클론배양묘, 1.98 mm)등 클론배양묘가 실생묘보다 모두 높게 나타났다. 또한 엽록소 a(실생묘, $11.2{\mu}g/g$; 클론배양묘, $13.2{\mu}g/g$), 엽록소 b(실생묘, $4.82{\mu}g/g$; 클론배양묘, $5.4{\mu}g/g$) 및 총 엽록소 함량(실생묘, $800.1{\mu}g/g$; 클론배양묘, $930.2{\mu}g/g$) 모두 실생묘 보다 클론배양묘가 높았으나, 카르티노이드 함량(실생묘, $260.3{\mu}g/g$; 클론배양묘, $265.2{\mu}g/g$)은 비슷하게 나타났다. 엽 조직의 미세구조 비교에서는 실생묘 및 클론배양묘 둘 다 책상(palisade)과 해면(sponge) 유조직 각각은 정상적인 배열로 나타났다. 따라서 5년생 클론배양묘와 실생묘의 비교에서 생장차이는 거의 없음을 보여주고 있다.

Keywords

References

  1. 김용욱, 김준철, 윤 양, 문흥규, 이재순. 2002. 낙엽송 (Larix leptolepis) 체세포배 유래 식물체와 종자실생묘 및 성숙목간의 형태.생리적 특징. 한국임학회지 91(1): 52-58.
  2. 김용욱, 한무석, 문흥규, 박소영. 2011. 백합나무의 체세포배 유도에 미치는 ABA, 환원질소원 및 삼투압제 효과. 한국 식물생명공학회지 38: 186-190.
  3. 손석규, 문흥규, 김용욱, 김지아. 2005. 백합나무 (Liriodendron tulipifera L.) 체세포배 발생에 미치는 모수 및 암 배양 효과. 한국임학회지 94(1): 39-44.
  4. 이재순, 문흥규, 김용욱. 2003. 체세포배 발생을 통한 백합나무 (Liriodendron tulipifera L.)의 대량증식. 한국식물생명공학회지 30: 359-363.
  5. 유근옥, 김외정, 김인식, 최형순, 이동흡, 김용욱. 2008a. 백합나무-생장특성 및 이용기술. 국립산림과학원 연구자료 320: 19-33.
  6. 유근옥, 김외정, 김인식, 최형순, 이동흡, 김용욱. 2008b. 백합나무-생장특성 및 이용기술. 국립산림과학원 연구자료 320: 110-136.
  7. Dai, J., Vendrame, W.A. and Merkle, S.A. 2004. Enhancing the productivity of hybrid yellow-poplar and hybrid sweetgum embryogenic cultures. In Vitro Cellular Developmental Biology-Plant 31: 15-20. 40: 376-383. https://doi.org/10.1079/IVP2004538
  8. Greenwood, M.S., Hopper, C.A. and Hutchison, K.W. 1989. Maturation in larch. I. Effect of age on shoot growth, foliar characteristic in larch, and DNA methylation. Plant Physiology 90: 406-412. https://doi.org/10.1104/pp.90.2.406
  9. Grossnickle, S.C., Major, J.E., Folk, R.S. and Webster, F.B. 1994. Interior spruce seedlings compared with emblings produced from somatic embryogenesis. I. Nursery development, fall acclimation, and over-winter storage. Canadian Journal Forest Research 24: 1376-1384. https://doi.org/10.1139/x94-178
  10. Lamhamedi, M.S., Chamberland, H., Bernier, P.Y. and Tremblay, FM. 2000. Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of container- grown white spruce somatic plants. Tree Physiology 20: 869-880. https://doi.org/10.1093/treephys/20.13.869
  11. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L. (eds.) Methods Enzymol., vol 148. Academic Press Inc., NewYork pp. 350-382.
  12. Menndez-Yuff, A., Barry-Etienne, D., Bertrand, B., Georget, F. and Etienne H. 2010. A comparative analysis of the development and quality of nursery plants derived from somatic embryogenesis and from seedlings for large-scale propagation of coffee (Coffea arabica L.). Plant Cell Tissue and Organ Culture 102: 297-307. https://doi.org/10.1007/s11240-010-9734-4
  13. Merkle, S.A. and Sommer, H.E. 1986. Somatic embryogenesis in tissue cultures of Liriodendron tulipifera. Canadian Journal Forest Research 16: 420-422. https://doi.org/10.1139/x86-077
  14. Merkle, S.A., Sotak, R.J., Wieeko, A.T. and Dommer, H.E. 1990. Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cellular Developmental Biology-Plant 26: 1086-1093. https://doi.org/10.1007/BF02624445
  15. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays tobacco tissue cultures. Physiologia Plantarum 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Nsangou, M. and Greenwood, M. 1998. Physiological and morphological differences between somatic, in vitro germinated, and normal seedlings of red spruce (Picea rubens Sarg.). Canadian Journal Forest Research 28: 1088-1092.
  17. O'Neill, G.A., Russell, J.H., Hooge, B.D., Ott, P.K. and Hawkins, C.B.D. 2005. Estimating gains from genetic tests of somatic emblings of interior spruce. Forest Genetics 12: 57-66.
  18. Park, Y.S. 2002. Implement of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Annual Forestry Science 59: 651-656. https://doi.org/10.1051/forest:2002051
  19. Rebbeck, J., Jensen, K.F. and Greenwood, M.S. 1992. Ozone effects on grafted juvenile and mature red spruce: photosynthesis, stomatal conductance, and chlorophyll concentration. Canadian Journal Forest Research 23: 450-456.