Development of Site Index Equations and Assessment of Productive Areas Based on Environmental Factors for Major Coniferous Tree Species

환경요인에 의한 주요 침엽수종의 지위지수 추정식 개발과 적지 평가

  • Lee, Yong Seok (Department of Forest, Environment, and System, Kookmin University) ;
  • Sung, Joo Han (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Chun, Jung Hwa (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Shin, Man Yong (Department of Forest, Environment, and System, Kookmin University)
  • 이용석 (국민대학교 산림환경시스템학과) ;
  • 성주한 (국립산림과학원 산림생태연구과) ;
  • 천정화 (국립산림과학원 산림생태연구과) ;
  • 신만용 (국민대학교 산림환경시스템학과)
  • Published : 2012.09.30

Abstract

This study was conducted to develop site index equations and to estimate productive areas for major coniferous species in Korea such as Pinus densiflora Sieb. et. Zucc, Pinus densiflora for. erect, Larix leptolepis and Pinus koraiensis using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 43 environmental factors including 15 climatic variables were regressed on site index by tree species to develop site index equations. Six environmental factors by species were selected as independent variables in the final site index equations. The result showed that the coefficients of determination for site index equations by species were ranged from 0.36 to 0.56, which seem to be relatively low but good enough for the estimation of forest stand productivity. The site index equations developed in this study were also verified by three evaluation statistics such as the estimation bias of model, precision of model, and mean square error of measurement. According to the evaluation statistics, it was found that the site index equations by species fitted well to the test data sets with relatively low bias and variation. As a result, it was concluded that the site index equations by species were well capable of estimating site quality. Based on the site index equations, the productive areas by species for all forest areas were estimated by applying GIS technique to the digital forest site map and climate map. In addition, the distribution of productive areas by species was illustrated by using GIS technique.

본 연구는 환경인자를 이용하여 우리나라에 분포하는 주요 침엽수종(중부지방소나무, 강원지방소나무, 낙엽송, 잣나무)의 지위지수 추정식을 개발하고 적지면적을 추정하기 위해 수행하였다. 이를 위해 산림입지도와 산림기후도로부터 산림생산력에 영향을 미칠 것으로 판단되는 43개 환경인자를 도출한 후, 최적 조합에 의해 수종별 지위지수 추정식을 조제하였다. 최종 수종별 지위지수 추정식에는 각각 6개의 환경인자가 독립변수로 사용되었으며, 경사형태, 유효 토심, 연 평균기온, 연 최고기온, 연 최저기온, 그리고 생장기간 동안의 총강수량 등의 변수가 지위지수 추정에 가장 영향을 미치는 것으로 나타났다. 수종별 지위지수 추정식의 설명력을 나타내는 결정계수는 0.36~0.56의 범위에 있는 것으로 분석되었으며, 모형의 평균편의, 정도, 표준오차의 3가지 평가통계량에 근거하여 검증을 실시한 결과 비교적 지위 추정능력이 높은 것으로 판명되었다. 또한 본 연구에서는 수종별 지위지수 추정식을 이용하여 각 수종의 적지면적을 산출하고 적지분포를 도해하였다.

Keywords

References

  1. 구교상, 김인호, 정진현, 원형규, 신만용. 2003. 경기.충청지역의 수치 산림입지도를 이용한 주요 수종의 산림생산력 추정에 관한 연구. 한국농림기상학회지 5(4):247-254.
  2. 구교상, 이명종, 신만용. 2010. 동해안 산불피해지 복구를 위한 산림생산력의 추정. 한국농림기상학회지 12(1): 36-44.
  3. 김성기, 박중수, 이영수, 서희철, 김광수, 윤진일. 2004. 경기북부지역 정밀 수치도제작 및 활용II-콩 생육모형 결합에 의한 재배적지 탐색. 한국농림기상학회지 6(1): 61-69.
  4. 김일현, 신만용, 김영채, 전상근. 2001a. 복원된 국지기후에 근거한 잣나무 성숙임분의 영양생장에 미치는 국지기후의 영향. 한국농림기상학회지 3(2): 105-113.
  5. 김일현, 신만용, 김영채, 전상근. 2001b. 국지기후가 잣나무 성숙임분의 생식생장에 미치는 영향분석. 한국농림기상학회지 3(4): 185-198.
  6. 김태훈, 이충화, 구교상, 정진현. 1991. 토양형별 주요수종의 생장. 임업연구원 연구보고 42:91-106.
  7. 산림청. 2001. 산림입지조사요령. pp. 91.
  8. 손영모, 이경학, 권순덕, 이우균. 2003. 주요수종의 임목자원 평가 및 예측시스템. 임업연구보고 04-01: pp. 49-52.
  9. 신만용, 윤종화, 차두송. 1996. 평균비 추정량에 의한 낙엽송 임목재적식의 지역 보정. 한국임학회지 85(1): 56-65.
  10. 신만용, 원형규, 이승우, 이윤영. 2007. 기후대별 입지환경 인자에 의한 소나무류의 지위지수 추정식 및 적지규명. 한국농림기상학회지 9(3): 295-305.
  11. 신만용, 정일빈, 구교상, 원형규. 2006. 환경요인에 의한 잣나무의 지위지수 추정식 개발과 적지 판정. 한국농림기상학회지 8(2): 79-106.
  12. 윤진일, 정재은, 이옥선, 정명희, 이가영. 김기철, 조은영, 황규홍, 서희철, 설현수, 이재현, 안재훈, 임종환, 서형호. 2010. 전자기후도기반 유역단위 농업기상예보시스템. 농림수산식품부 연구개발보고서 1: 1-170.
  13. 원형규, 정진현, 구교상, 송명희 신만용. 2005. 권역별 입지, 토양 환경요인에 의한 임지생산력 추정. 한국농림기상학회지 7(2): 132-140.
  14. 이승우, 원형규, 신만용, 손영모, 이윤영. 2007. 산림 입지토양 환경요인에 의한 상수리나무와 신갈나무의 적지추정. 한국토양비료학회지 40(5): 429-434.
  15. 진현오, 이명종, 신영오, 김정제, 전상근. 1994. 산림토양학. pp. 325.
  16. Arbatzis, A.A. and H.E. Burkhart. 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantation. Forest Science 38(1): 192-198.
  17. Belsley, D.A., Kuh, E. and Welsch, R.E. 1980. Regression diagnostics. John Wiley & Sons, New York, pp. 292.
  18. Corona, P., Scotti, R. and Kutner, M.H. 1988. Relationship between environmental factors and site index in Douglas-Fir plantation in central Italy. Forest Ecology and Management 110: 195-207.
  19. Curt, T.M., Bouchaud, B. and Agrech, G. 2001. Predicting site index of Douglas-Fir plantations from ecological variables in the Massif Central area of France. Forest Ecology and Management 149: 61-74. https://doi.org/10.1016/S0378-1127(00)00545-4
  20. Fritts, H.C. 1976. Tree rings and climate. Academic Press Inc.(London) Ltd. pp. 567.
  21. Judge, G.G., Hill, R.C., Griffiths, W.E., Lutdepohl, H. and Lee, T. 1988. Introduction to the theory and practice of econometrics. John Wiley & sons. New York, pp. 1024.
  22. Kabrick, J.M., Shifley, S.R., Jensen, R.G., Fan, J. and Larsen, R. 2004. Factors associated with oak mortality in Missouri Ozak forest. USDA Forest Service General Technical Reports NE-316: 27-35.
  23. Kim, K.S. 1975. Agricultural Meteorology, Hyangmun Book Co., pp. 331.
  24. Kramer, H. 1988. Waldwachstumslehre. Paul Parey. pp. 374.
  25. LaMarche, V.C., Jr. Graybill, D.A., Fritts, H.C. and Rose, M.R. 1984. Increasing atmospheric carbon dioxide. Tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019-1021. https://doi.org/10.1126/science.225.4666.1019
  26. Monserud, R.A. 1987. Variations on a theme of site index. Proceedings, IUFRO Forest Growth Modeling and Prediction Conference. Minneapolis, 419-427.
  27. Myers, R.H. 1986. Classical and modern regression with applications. Duxbury Press. pp. 395.
  28. Shin, M.Y. 1990. The use of ridge regression for yield prediction models with multicolinearity. Journal of Korean Forest Society 79(3): 260-268.
  29. Snee, R.D. 1977. Validation of regression models: Methods and Examples. Technometrics. 19:415-428. https://doi.org/10.1080/00401706.1977.10489581
  30. Yeh, H.Y. and Wensel, L.C. 2000. The relationship between tree diametergrowth and climate for coniferous species in northern California. Canadian journal of Forest Research 30: 1463-1471. https://doi.org/10.1139/x00-074
  31. Yim, K.B. 1985. The Principle of Silviculture, Hyangmun Book Co. pp. 491.