Developing Dynamic DBH Growth Prediction Model by Thinning Intensity and Cycle - Based on Yield Table Data -

간벌강도 및 주기에 따른 동적 흉고직경 생장예측 모형개발 - 기존 수확표 자료를 기반으로 -

  • Kim, Moonil (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Park, Taejin (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Kwak, Hanbin (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Byun, Jungyeon (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Nam, Kijun (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Lee, Kyung-Hak (Department of Forest Policy, Korea Forest Research Institute) ;
  • Son, Yung-Mo (Department of Forest Policy, Korea Forest Research Institute) ;
  • Won, Hyung-Kyu (Department of Forest Policy, Korea Forest Research Institute) ;
  • Lee, Sang-Min (Korea Rural Economic Institute)
  • 김문일 (고려대학교 환경생태공학과) ;
  • 이우균 (고려대학교 환경생태공학과) ;
  • 박태진 (고려대학교 환경생태공학과) ;
  • 곽한빈 (고려대학교 환경생태공학과) ;
  • 변정연 (고려대학교 환경생태공학과) ;
  • 남기준 (고려대학교 환경생태공학과) ;
  • 이경학 (국립산림과학원 산림정책연구부) ;
  • 손영모 (국립산림과학원 산림정책연구부) ;
  • 원형규 (국립산림과학원 산림정책연구부) ;
  • 이상민 (한국농촌경제연구원)
  • Published : 2012.06.30

Abstract

The objective of this study was developing dynamic stand growth model to predict diameter at breast height (DBH) growth by thinning intensity and cycle for major tree species of South Korea. The yield table, one of static stand growth models, constructed by Korea Forest Service was employed to prepare dynamic stand growth models for 8 tree species. In the process of model development, the thinning type was designated to thinning from below and equations for predicting the DBH change after thinning by different intensities was generated. In addition, stand density (N/ha), age and site index were adopted as explanatory variables for DBH prediction model. Thereafter, using the model, DBH growth under various silvicuture through integrating such equations considering thinning intensities, and cycles. The dynamic stand growth model of DBH developed in this study can provide understanding of effectiveness in forest growth and growing stock when thinning practice is performed in forest. Furthermore, results of this study is also applicable to quantitatively assess the carbon storage sequestration capability.

본 연구에서는 우리나라 주요 수종을 대상으로 간벌강도 및 주기에 따른 흉고직경생장을 예측할 수 있는 동적생장모형을 개발하였다. 그동안 산림청에서 구축한 정적생장모형인 임분수확표를 이용하여 총 8개 수종에 대한 동적생장모형을 구축하였다. 간벌종류는 하층간벌을 전제로 하였으며, 간벌강도별로 간벌후의 흉고직경변화를 예측할 수 있는 함수식을 구축하였다. 또한, 임령, 지위지수 이외에도 ha당 본수를 설명변수로 하는 흉고직경여 총함수식을 유도하였다. 이와 같이 구축된수확표를 이여 모형을 이용하여 간벌강도 및 주기별로 확표를 이 다양하이여 될 수 있었다. 본 연구를 통해 개발된수확표를 용하여 모형을 이용해 숲가꾸기 등의 산림시업이 산림용하 및 임목축분수변화에 미치는 효과를 파악할 수 있으며, 나아이산림의 탄소흡수능력을 평가하는데 본 연구결과가 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. 강성기, 김완수, 이원섭, 김지홍. 2001. 침엽수 조림지에서의 잔존임분밀도에 따른 임목생장 비교에 관한 연구. 임산에너지 20(2): 46-57.
  2. 권순덕, 김선영, 정주상, 김형호. 2007. 잣나무 임분의 개체목 거리독립생장모델을 이용한 간벌효과 분석모델 개발. 한국임학회지 96(6): 742-749.
  3. 김동춘. 1967. 일본잎갈나무 임분의 수확과 생장에 관한 연구. 농사시험연구논문집 13: 1-62.
  4. 김선영, 설아라, 정주상. 2011. 정기평균생장을 이용한 잣나무 임분의 흉고직경 생장예측모델 및 고사예측모델의 개발. 한국임학회지 100(1): 1-7.
  5. 박태진, 이우균, 정래선, 김문일, 권태협. REDD+ 모니터링 시스템 구축을 위한 원격탐사기술의 활용방안. 한국임학회지 100(3): 315-326.
  6. 산림청. 2009. 재적중량표 및 임분수확표. pp. 273.
  7. 손영모, 이경학, 서정호, 이우균. 2005. 간벌효과분석모델개발 (I). 산림과학논문집 68: 9-22.
  8. 서정호, 이우균, 손요환, 함보영. 2001. 안면도소나무 임분의 동적생장모델. 한국임학회지 90(6): 725-733.
  9. 서정호, 이우균, 이경학, 정세경, 손영모. 2005a. 혼효림에서 간벌작업이 개체목 생장에 미치는 영향. 한국산림측정학회 8: 50-58.
  10. 서정호, 손영모, 이경학, 이우균. 2005b. 안면도 소나무림의 최적 경쟁지수 선정 및 단목생장모델 개발. 한국산림측정학회지 8: 125-135.
  11. 서정호, 손영모, 이경학, 이우균, 손요환. 2005c. 동적임분생장모델을 이용한 임분바이오메스 및 탄소흡수량 추정. 임산임학회지 24(2): 37-45.
  12. 유진우. 1986. 잣나무, 상수리나무임분의 수확과 생장에 관한 연구. 산림과학논문집 33: 13-34.
  13. 유진우, 노규형. 1987. 신갈나무 임분의 수확과 생장에 관한 연구. 산림과학논문집 34: 1-11.
  14. 이우균. 1995. 산림시업의 지속성을 위한 동적 지역산림 경영모델 -산림생장 및 경제적 여건을 고려한-. 산림경제연구 3(1): 71-88.
  15. 이우균. 1996a. 산림경영계획의 방법론적 고찰: 1. 산림조사와 산림생장모델. 자연자원연구 4: 29-49.
  16. 이우균. 1996b. 위치종속임분조사에 의한 개체목의 경쟁지수 및 흉고직경생장추정. 한국임학회지 85(3): 539-551.
  17. 이우균, 서정호, 황재우, 김진수. 1999. 경쟁지수에 의한 잣나무임분의 흉고직경생장모델. 한국산림측정학회지 2(1): 21-30.
  18. 이우균, 서정호, 손요환, 김진수. 2000. 가평지역 잣나무 임분의 동적 생장 및 경영모델. 한국산림측정학회지 3(1): 10-21.
  19. 이우균, 서정호, 배상원. 2000. 강원도 지방 소나무 동령 임분의 최대입목본수 및 고사모델. 한국임학회지 89(5): 634-644.
  20. 이흥균. 1971. 중부지방소나무의 수확과 생장에 관한 연구. 산림과학논문집 18: 9-30.
  21. Bachofen, H. and Zingg, A. 2001. Effectiveness of structure improvement thinning on stand structure in subalpine Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology Management 145(1-2): 137-149. https://doi.org/10.1016/S0378-1127(00)00581-8
  22. Camino, R.D. 1976. Zur Bestimmung der Bestandeshomogenitat. Allgemeine Forst und Jagdzeitung 147: 54-58.
  23. Canellas, I., Del Rio., M., Roig, S. and Montero, G. 2004. Growth response to thinning in Quercus pyrenaica Wild. coppice stands in Spanish central mountain. Annals of Forest Science 61(3): 243-250. https://doi.org/10.1051/forest:2004017
  24. Daume, S. and Robertson, D. 2000. A heuristic approach to modelling thinning. Silva Fenn 34(3): 247-249.
  25. Gadow, K.v. and Hui, G.Y. 1993. Stam mzahlentwicklung und potentielle Bestand esdichte bei Cunnunghamia lanceo-lata. Central flatt fur die gesante Forstwesen 110(2): 41-48.
  26. Goff, N.L. and Ottorini, J.M. 1993. Thinning and climate effects on growth of beech (Fagus sylvatica L.) in experimental stands. Forest Ecology and Management 62(1-4): 1-14. https://doi.org/10.1016/0378-1127(93)90038-O
  27. Hamilton, G.J. 1981. The effects of high intensity thinning on yield. Forestry (Oxford) 54(1): 1-15. https://doi.org/10.1093/forestry/54.1.1
  28. Houtzagers, M.R. 2002. Thinning in discussion (in Dutch). Nederlands Bosbouwtijdschr 74(1): 7-14.
  29. Juodvalkis, A., Kairiukstis, L. and Vasiliauskas, R. 2005. Effects of thinning on growth of six tree species in north-temperate forests of Lithuania. European Journal of Forest Research 124: 187-192. https://doi.org/10.1007/s10342-005-0070-x
  30. Kira, T. and Shidei, T. 1967. Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japan Journal of Ecology 17(2): 70-87.
  31. Kramer, H. and Akca, A. 1987. Leitfaden fr Dendrometrie und Bestandesinventur. J.D. Saurlander's Velag, Frankfurt am Main.
  32. Kramer, H. 1988. Wachstumslehre. Verlag Paul Parey, Hamburg und Berlin. pp. 374.
  33. Lee, W.K. 1993. Wachstums-und Ertrags modells fuer Pinus densiflora in der Kangwon Provinz, Korea, Dissertation, Goettingen.
  34. Lee, W.K., Akca, A. and Byun, W.H. 1993. Dynamics growth prediction model for Pinus densiflora in Kangwon Province, Korea, Proceedings of IUFRO-Conference in Seoul 1993: 156-168.
  35. Lee, W.K. 1994. Statische und dynamische Wachstums-modelle auf der Grundlage einmaliger Probeflaechenaufnahmen am Beispiel von Pinus densiflorain Korea (Static and dynamic growth model based on temporary sample survey in case of Pinus densiflorain Korea). Allgemeine Forst und Jagdzeitung 165(4): 69-76.
  36. Lee, W.K., Biging, G., Gadow, K.v. and Byun,W.H. 2006. A forest planning model for continuous employment in a forested village with primarily young stands in Korea. New Forests 29(1): 15-32.
  37. Makinen, H. and Isomaki, A. 2004a. Thinning intensity and growth of Norway spruce stands in Finland. Forestry 77(4): 349-364. https://doi.org/10.1093/forestry/77.4.349
  38. Makinen, H. and Isomaki, A. 2004b. Thinning intensity and growth of Scots pine stands in Finland. Forest Ecology Management 201(2-3): 311-325. https://doi.org/10.1016/j.foreco.2004.07.016
  39. Nishizono, T. 2010. Effects of thinning level and site productivity on age-related changes in stand volume growth can be explained by a single rescaled growth curve. Forest Ecology and Management 259(12): 2276-2291. https://doi.org/10.1016/j.foreco.2010.03.002
  40. Nowak, C.A. 1996. Wood volume increment in thinned, 50 to 55 year-old, mixed species Allegheny hardwoods. Canadian Journal of Forest Research 26: 819-835. https://doi.org/10.1139/x26-091
  41. Pothier, D. 2002. Twenty-year results of precommercial thinning in a balsam fir stand. Forest Ecology and Management 168(1-3): 177-186. https://doi.org/10.1016/S0378-1127(01)00738-1
  42. Ryan, M.G., Phillips, N. and Bond, B.J. 2006. The hydraulic limitation hypothesis revised. Plant Cell and Environment 29: 367-381. https://doi.org/10.1111/j.1365-3040.2005.01478.x
  43. Schabenberger, O. 2005. Nonlinear regression in SAS. Los Angeles, Calif.: Univ. of California, SAS Library. Available from: http://www.ats.ucla.edu/stat/SAS/library/SASNLin_os.htm. Accessed Apr. 27, 2005.
  44. Schabenberger, O. and Pierce, F.J. 2002. Contemporary statistical models for the plant and soil sciences. CRC Press, New York.
  45. Shingh, A., Korasapati, N.R., Juneja, V.K., Subbiah J., Froning, G. and Thippareddi, H. 2011. Dynamic predictive model for the growth of Salmonella spp. in liquid whole egg. Journal of Food Science 76(3): 225-232. https://doi.org/10.1111/j.1750-3841.2011.02074.x
  46. Thenkabail, P.S., Stucky, N., Grisscom, B.W., Ashton, M.S., Diels, J., van der Meer, B. and Enclona, E. 2004. Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. International Journal of Remote Sensing 25(23): 5447-5472. https://doi.org/10.1080/01431160412331291279
  47. Tullus, H. 2002. The influence of intermediate cuttings on the growth of pine ad spruce forests: silvicultural recommendations. Metsanduslikud Uurimused (Forestry Studies, Tartu) 36: 126-135.
  48. Vanclay, J.K. 1994. Modelling forest growth and yield applications to miced tropical forests. CAB International, Wallingford, UK.
  49. Varmola, M. and Salminen, H. 2004. Timing and intensity of precommerical thinning in Pinus sylvestris stands. Scandinavian Journal of Forest Research 19(2): 142-151. https://doi.org/10.1080/02827580310019545
  50. Zeide, B. 2001. Thinning and growth: a full turnaround. Journal of Forestry 99(1): 20-25.
  51. Zeide, B. 2004. Optimal stand density: a solution. Canadian Journal of Forest Research 34(4): 846-854. https://doi.org/10.1139/x03-258