Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing

동결에 따른 모래-실트 혼합토의 탄성파 특성

  • 박정희 (고려대학교 건축사회환경공학부) ;
  • 홍승서 (한국건설기술연구원) ;
  • 김영석 (한국건설기술연구원) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Published : 2012.04.01

Abstract

The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

대기의 온도가 $0^{\circ}C$ 이하로 내려가면 지표면의 물이 얼기 시작한다. 체적팽창을 수반하는 지반의 동결현상은 흙의 거동에 영향을 미치며 지반구조물의 심각한 피해를 야기한다. 본 연구의 목적은 지표면에서 지반 내부로 진행되는 자연적인 동결현상을 반영할 수 있도록 제작된 동결용 셀을 이용하여 모래-실트 혼합토의 온도변화에 따른 탄성파의 특성을 파악하는 것이다. 나일론으로 제작된 동결용 셀에 모래와 실트로 구성된 시료를 조성한 후 시료의 깊이별로 상부, 중앙부 및 하부에 설치된 세 쌍의 벤더 엘리먼트와 피에조 디스크 엘리먼트를 이용하여 전단파와 압축파를 측정하였다. 시료의 온도가 $20^{\circ}C$에서 $-10^{\circ}C$로 변하는 동안 시료의 깊이에 따른 탄성파 속도, 공진주파수, 진폭을 연속적으로 측정하였다. 시료가 동결됨에 따라 전단파와 압축파의 속도 및 공진주파수는 $0^{\circ}C$에서 큰 변화를 보였으며, 전단파와 압축파의 진폭은 각기 다른 경향을 나타내었다. 상온에서 전단파 속도는 유효응력의 영향을 받지만 흙이 동결된 후에는 흙입자와 얼음의 결합력에 큰 영향을 받는다. 본 연구는 흙의 동결에 따른 탄성파 특성의 기초적인 정보를 제공한다는 점에서 의의가 있다.

Keywords

References

  1. ASTM D854-05(2006), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, Annual Book of ASTM Standard.
  2. ASTM D4253-00(2006), Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, Annual Book of ASTM Standard.
  3. ASTM D4254-00(2006), Standard Test Methods for Minimum Index Density and Unit Weight of Soils Calculation of Relative Density, Annual Book of ASTM Standard.
  4. Deschartres, M. H., Cohn-Tenoudji, Fr., Aguirre-Puente, J. and Khastou, B.(1988), Acoustic and Unfrozen Water Content Determination, In Proc.5th Inl. Conf .on Permafrost, pp. 324-328.
  5. Eom. Y. H., Truong, Q. H., Byun, Y. H. and Lee, J. S. (2009), Elastic Wave Characteristics According to Cementation of Dissolved Salt, Journal of the Korean Geotechnical Society, Vol. 25, No. 5, pp. 75-86.
  6. Ishihara, K., Huang, Y., and Tsuchiya, H.(1998), Liquefaction Resistance of Nearly Saturated Sand as Correlated with Longitudinal Wave Velocity. Proc. Biot Conf. on Poromechanics, Poromechanics - A Tribute to Maurice A. Biot, Thimus, J.F., Abousleiman, Y. Cheng, A.H.D. Coussy, O., and Detournay, E., eds., pp. 583-586.
  7. Kim, Y. C.(2003), An Experimental Study on the Electrical Resistivity and Ultrasonic Wave Velocity in Frozen Siol, Korean Geoenvironmental Society, 03 conference, pp. 135-142.
  8. Lee, C., Truong, Q. H., Lee, J. S.(2010), Cementation and Bond Degradation of Rubber-Sand Mixtures, Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 763-774. https://doi.org/10.1139/T09-139
  9. Lee, J. S. and Lee, C. H.(2006), Principles and Considerations of Bender Element Tests, Journal of the Korean Geotechnical Society, Vol. 22, No. 5, pp. 47-57.
  10. Lee, J. S. and Santamarina, J. C.(2005), Bender Elements: Performance and Signal Interpretaion, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  11. Lee, J. S. and Santamarina, J. C.(2007), Seismic Monitoring Short-Duration Events-liquefaction in 1g Models, Canadian Geotechnical Journal, Vol. 44, No. 6, pp. 659-672. https://doi.org/10.1139/t07-020
  12. Lee, M. Y., Fossum. A, Costin, L. S and Bronowski, D.(2002), Frozen Soil Material Testing and Constitutive Modeling, Report, Sandia National Laboratories, New Mexico, Tex., pp. 26-28.
  13. Nakano, Y., Martin, R. J. and Smith, M.(1972), Ultrasonic Velocity of the Dilation and Shear Wave in Frozen Soil, Water Resources Research, Vol. 8, No. 4, pp. 1024-1030. https://doi.org/10.1029/WR008i004p01024
  14. Noh, J. H. and Lee, S. R.(2008), Change in Soil-Water Characteristics of Unsaturated Soil During Freezing, Korean Society of Civil Engineers, 2008 Conference, pp. 3078-3081.
  15. Roesler, S. K.(1979), Anisotropic Shear Modulus Due to Stress Anisotropy, Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. 7, pp. 871-880.
  16. Rui, D. H., Suzuki, T. and Kim, Y. S.(2007), Frost Heave Force of Ground and Countermeasrue for Damage of Structures, Journal of the Korean Geotechnical Society, Vol. 23, No. 5, pp. 43-51.
  17. Santamarina, J. C., Klein, K. A., and Fam, M. A.(2001), Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring, Wiley, New York, p.207.
  18. Shin, E. C., Kang, S. J., Park, J. J. and Kang, H. H.(2009), Analysis of Frost Heave Characteristics for Subgrade Soil using Freezing Apparatus System, Korean Society of Road Engineers, 2009 Conference, pp. 603-608.
  19. Tester, R. E. and Gaskin, P. N.(1996), Effect of Fines Content on Frost Heave, Canadian Geotechnical Journal, Vol. 33, pp. 678-680. https://doi.org/10.1139/t96-092-313
  20. Wang, D. Y., Zhu, Y. L., Ma, W., Niu, Y. H.(2006), Application of Ultrasonic Technology for Physical-Mechanical Properties of Frozen Soil, Cold Regions Science and Technology, Vol. 44, pp. 12-19. https://doi.org/10.1016/j.coldregions.2005.06.003
  21. Yoon, Y. W., Kim, S. E., Kang, B. H. and Kang, D. S. (2003), Dynamic Behavior of Weathered Granite Soils After Freezing- Thawing, Journal of the Korean Geotechnical Society, Vol. 19, No. 5, pp. 69-78.
  22. Yu, P. and Richart, F. E. Jr.(1984), Stress Ratio Effects on Shear Modulus of Dry Sands, Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 3, pp. 331-345. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(331)
  23. Zumdahl, S.S and Zumdahl, S.A.(2008), Chemistry, Brooks Cole, Belmont, p. 477.