LED를 광원으로 사용한 해양미세조류 Isochrysis galbana 상관관계 조건 도출 연구

Correlation Conditions for Marine Microalgae Isochrysis galbana under Illumination of Light Emitting Diodes

  • 최보람 (부경대학교 환경해양대학 환경공학과 대학원) ;
  • 김동수 (부경대학교 수산과학대학 해양바이오신소재공학과) ;
  • 이태윤 (부경대학교 환경해양대학 환경공학과)
  • 발행 : 2012.10.01

초록

본 연구는 해양미세조류의 일종인 Isochrysis galbana를 다양한 파장의 발광다이오드를 이용하여 배양한 후 최적 파장을 찾아내고, 최적파장을 광원으로 하여 회분식 실험에서의 대량 배양 조건을 찾기 위해 수행되었다. I. galbana 배양에 가장 효율적인 파장은 백색 LED였으며, 백색 LED의 광도에 따른 실험을 통해 3,000Lux의 광도가 본 미세조류의 성장에 최적임을 알 수 있었다. 형광등과의 비교 실험 시 같은 광도에서 백색 LED가 미세조류의 배양에 있어 10% 정도 높은 효율을 나타내었다. 배양이 진행되어 셀 농도가 증가하면서 발생하는 그림자 효과를 상쇄시키기 위해 공기 공급을 하였으며, 4가지 조건의 공기 공급 속도에서 모두 비슷한 성장특성을 보여주었다. 공기를 주입한 경우 주입하지 않은 경우보다 최대 3배 이상 균체 농도가 증가하였다.

This study was performed to determine optimum conditions of batch type cultivation of Isochrysis galbana cultivated under various wavelengths of light emitting dioes (LEDs). Among LEDs used in the cultivation, white LED was found to be the most effective light source, and light intensity of 3,000Lux resulted in the most effective for the cultivation of Isochyrysis galbana. Comparison with common light source, fluorescent light, showed less effective than that with white LED. Four different air flow rates were tested to overcome shading effects due to denser cell concentration in the solution. In results, cell growth rates and maximum cell concentrations were similar regardless of air flow rates. Three times greater cell concentrations, however, were observed when air was applied.

키워드

참고문헌

  1. Bouaran, G., Dean, L. L., Lukomska E., Kaas, R. and Baron, R.(2003), Transient Initial Phase in Continuous Culture of Isochrysis Galbana Affinis Tahiti, Aquat. Living Resours, Vol. 16, No. 4, pp. 389-394. https://doi.org/10.1016/S0990-7440(03)00053-6
  2. Burgess, J. G., Iwamoto, K., Miura, Y., Takano, H. and Matunaga, T.(1993), An Optical Fiber Photobioreactor for Enhanced Production of the Marine Unicellular Alga Isochrysis aff. Galbana T-Iso(UTEX LB2307) Rich in Docosahexaenoic Acid, Appl. Microbiol. Biotechnol., Vol. 39, No. 2, pp. 456-459. https://doi.org/10.1007/BF00205032
  3. Chen, C. Y., Saratale, G. D., Lee, C. M., Chen, P. C. and Chang, J. S.(2008), Phototrophic Hydrogen Production in Photo -bioreactors Coupled with Solar-energy-excited Optical Fibers, Int. J. Hydrogen Energ., Vol. 33, No. 2, pp. 6878-6885. https://doi.org/10.1016/j.ijhydene.2008.09.009
  4. Choi, S. H., Oh, Y. T. and So, J. K.(2006), Characterisrics of Exhaust Emission by the Application of Biodiesel Fuel and Oxygenates as an Alternative Fuel in an Agricultural Diesel Engine, J. of Biosystems Eng,. Vol. 31, No. 7, pp. 457-462. https://doi.org/10.5307/JBE.2006.31.6.457
  5. Enright, C. T., Newkirk, G. F., Craigie, J. S. and Castell, J. D.(1986), Evaluation of Phytoplankton as Diets for Juvenile Ostrea edulis. L, J. of Experimental Marine Biol. and Ecol., Vol. 96, No. 7, pp. 1-13. https://doi.org/10.1016/0022-0981(86)90009-2
  6. Gabriel Bitton(1996), Wastewater Microbiology, John Wiley & Son, N. Y., pp. 68-75.
  7. Guillard, R. R. L. and Ryther, D.(1962), Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea(Cleve) Gran, Can. J. Microbiol., Vol. 8, No. 3, pp. 229-239. https://doi.org/10.1139/m62-029
  8. Hamasaki, A., Shioji, N., Ikuta, Y., Hukuda, Y., Makita, T., Hirayama, K., Matuzaki, H., Tukamato, T. and Sasake, S.(1994), Carbon Dioxide Fixation by Microalgae Photosynthesis using Actual Flue Gas, Biochem. Biotechnol., Vol. 45, No. 1, pp. 79 9-809.
  9. Han, B. P.(2002), A Mechanistic Model of Photo-Inhibition Induced by Photodamage to Photosystem, J. Theor. Biol., Vol. 214, No. 2, pp. 519-527. https://doi.org/10.1006/jtbi.2001.2468
  10. Hirata, S., Taya, M. and Tone, S.(1996), Characterization of Chlorella Cell Cultures in Batch and Continuous Operations under a Photoautotrophic Condition, J. Chem. Eng., Vol. 29, No. 6, pp. 953-959. https://doi.org/10.1252/jcej.29.953
  11. Javanmardian, M. and Palsson, B. O.(1991), High Density Photoaurotrophic Cultures - Design, Construction and Operation of a Noble Photobioreactor System, Biotechnol. Bioeng., Vol. 38, No. 2, pp. 1182-1189. https://doi.org/10.1002/bit.260381010
  12. Katsuda, T., Lababpour, A., Shimahara, K. and Katoh, S.(2004), Astaxanthin Production by Haematococcus Pluvialis under Illumination with LEDs, Enzyme Microb. Technol., Vol. 35, No. 4, pp. 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016
  13. Lee, C. G. and Palsson, B. O.(1994), High-density Algal Photo -bioreactors using Light-emitting Diodes, Biotechnol. Bioengr., Vol. 44, No. 3, pp. 1161-1167. https://doi.org/10.1002/bit.260441002
  14. Lee, T., Choi, B., Lee, J. and Lim, J.(2011), Cultivation of Chlorella sp. Using Light Emitting Diode, J. Korea Environ. Engr., Vol. 33, No. 8, pp. 591-597. https://doi.org/10.4491/KSEE.2011.33.8.591
  15. Lim, Y. K., Shin, S. C., Yim, E. S. and Song, H. O.(2008), The Effective Product Method of Biodisel, J. Korean Ind. Eng. Chem., Vol. 19, No. 4, pp. 137-144.
  16. Mata, T., Martins, A. and Caetano, N.(2010), Microalgae for Biodiesel Production and Other Applications: A Review, Renewable Sustainable Energy Review, Vol. 14, No. 2, pp. 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  17. Ojala, A.(1993), Effects of Temperature and Irradiance on the Growth of Two Freshwater Photosynthetic Cryptophytes., J. Phycol., Vol. 29, No. 4, pp. 278-284. https://doi.org/10.1111/j.0022-3646.1993.00278.x
  18. Park, J. I., Woo, H. C. and Lee, J. H.(2008), Production of Bio-Energy from Marine Algae : Status and Perspectives, Korea Chem. Eng. Res., Vol. 46, No. 5, pp. 833-844.
  19. Patil, V., Kallqvist, R., Olsen, E., Vogt, G. and Gislerod, H.(2007), Fatty Acid Composition of 12 Microalgae for Possible Use in Aquaculture Feed, Aquacult Int., Vol. 15, pp. 1-9. https://doi.org/10.1007/s10499-006-9060-3
  20. Pulz, O., Gerbsch, N. and Buchholz, R.(1995), Light Energy Supply in Plate and Light Diffusing Optical Fiber Bioreactors., J. Appl. Phycology, Vol. 7, No. 1, pp. 145-149. https://doi.org/10.1007/BF00693061
  21. Sanchez, S., Martinez, M. E. and Espinola, F.(2000), Biomass Production and Biochemical Variability of the Marine Microalga Isochrysis Galbana in Relation to Culture Medium, J. Biochmical Engineering, Vol. 6, No. 1, pp. 13-18. https://doi.org/10.1016/S1369-703X(00)00071-1
  22. Sefa, A.(2011), Comparison of Isochrysis Galbana and Chlorella sp. Microalgae on Growth and Survival Rate of European Flat Oyster(Ostrea edulis, Linnaeus 1758) larvae, Ind. J. Geo-Marine Sci., Vol. 40, No. 1, pp. 55-58.
  23. Tredici, M. R., Carlozzi, P., Zittelli, G. C., and Materassi, R.(1991), A Vertical Alveolar Panel(VAP) for Outdoor Mass Cultivation of Microalgae and Cyanobacteria, Bioresource Technol., Vol. 38, No. 2, pp. 153-160. https://doi.org/10.1016/0960-8524(91)90147-C
  24. Wang, C. Y., Fu, C. C. and Liu, Y. C.(2007), Effects of using Light-emitting Diodes on the Cultivation of Spirulina platensis, Biochem. Eng. J., Vol. 37, No. 4, pp. 21-25. https://doi.org/10.1016/j.bej.2007.03.004