DOI QR코드

DOI QR Code

Characteristics of Microbial Community and Bio-hydrogen Production from Food Waste

음식물쓰레기의 생물학적 수소생산 및 미생물의 군집특성

  • Choi, Moon-Su (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 최문수 (서울과학기술대학교 환경공학과) ;
  • 이태진 (서울과학기술대학교 환경공학과)
  • Published : 2012.12.31

Abstract

Hydrogen gas production of anaerobic fermentative process from food waste as a substrate was 3.47 mg $H_2/g$ COD. The hydrogen production was little less than the synthetic wastewater with sucrose as a substrate (7.56 mg $H_2/g$ COD). The B/A ratios of the synthetic wastewater and food waste were 3.73 or 8.01 respectively. Butyric acid was more produced when hydrogen production was higher. Microbial community in the samples was analyzed as Escherichia sp., Klebsiella sp., Clostridium sp., Bacterium sp., and Enterobacter sp. Clostridium sp. was detected both samples but Klebsiella sp. was more active with fermentation process of the food waste. Taxonomic description shows that 60% of the microorganism was ${\gamma}-proteobacteria$ and Firmicute and Bacteria was 20% respectively.

탄소원으로 자당을 공급한 합성폐수에 비해 상대적으로 발생수소량은 (7.56 mg $H_2/g$ COD) 적었지만 음식물쓰레기를 기질로 이용한 혐기적 발효공정에서 발생된 가스는 3.47 mg $H_2/g$ COD의 수소생성율을 나타내었다. 자당 합성폐수와 음식물쓰레기의 경우, 각각 8.01, 3.73의 B/A비를 보였으며 수소생성이 많은 경우 주요 유기산 중 Butyric acid가 많이 검출되었다. 동정분석 결과 주요 미생물 군집은 Escherichia 속, Klebsiella 속, Clostridium 속, Bacterium 속, 그리고 Enterobacter 속으로 분석되었다. Clostridium 속은 자당 합성폐수와 음식물 쓰레기 모두에서 관찰되었고 Klebsiella 속은 음식물 쓰레기의 발효과정에서 더욱 활발한 것으로 나타났다. 미생물의 분류학적 관계를 확인한 결과로 60%가 ${\gamma}-proteobacteria$이였으며 Firmicute와 Bacteria가 각각 20%를 차지하였다.

Keywords

References

  1. Momirlan M. and Veziroglu, T. N., "Recent directions of world hydrogen production", Renew. Sust. Energ. Rev, 3, pp. 219-231. (1999). https://doi.org/10.1016/S1364-0321(98)00017-3
  2. Debabrata D. and Veziroglu T. N., "Hydrogen production by biological processes: a survey of literature", Int. J. of Hydrogen Energy, 26, pp. 13-28. (2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Rifkin J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth", Penguin Putnam, New Work, NY US., pp. 15-17. (2002).
  4. Mizuno, O., Ohara, T., Shinya, M. and Noike, T., "Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora", Wat. Sci. Tech, 42(3), pp. 345-350. (2000).
  5. Lay, J. J., Lee, Y. J. and Noike, T., "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Wat. Res, 33, pp. 2579-2586. (1999). https://doi.org/10.1016/S0043-1354(98)00483-7
  6. Kang, J. H., Kim, D. K. and Lee, T. J., "Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment", Bioresour. Technol, 109, pp. 239-243. (2012). https://doi.org/10.1016/j.biortech.2012.01.048
  7. Ozkan, L., Tuba H., Erguder, G. and N. Demirer., "Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield", Int. J. Hydrogen Energy, 36(1), pp. 382-389. (2011). https://doi.org/10.1016/j.ijhydene.2010.10.006
  8. Jun, Y. S., Joe, Y. A. and Lee, T. J., "Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater", Journal of KSEE, 31(2), pp. 139-146. (2009).
  9. Lee, B. S., Nam, S. C. and Nam K. W., "An Evaluation of Biogas Production Efficiencies from Mechanically Pretreated Food Waste and Primary Sewage Sludge Mixture by Food Waste Mixing Ratio through Single Stage Anaerobic Co-Biogasification", Korean Society of Waste Management, 28(6), pp. 648-669. (2011).
  10. Shin, J. D., Sung, S. H., Kim H. O., Kim, S. C. and Lee, M.S., "Monitoring of Hydrogen Sulfide in Anaerobic Co-digestion of Swine Manure and Food Waste", J. of KORRA, 16(4), pp. 43-49. (2008).
  11. Lee, J. C., Kim, J. H., Park, H. S. and Pak, D.W., "Bioethanol production using batch reactor from foodwastes", J. of KSEE, 32(6), pp. 609-614. (2010).
  12. Logan, B. E., OH, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers", Environ. Sci. Technol, 36, pp. 2530-2535. (2002). https://doi.org/10.1021/es015783i
  13. Khanal, S. K., Chen, W. H., Li, L. and Sung, S., "Biological hydrogen production: effects of pH and intermediate products", Int. J. Hydrogen Energy, 29, pp. 1123-1131. (2004).
  14. Chen, C. C. and Lin, C. Y., "Using sucrose as a substrate in an anaerobic hydrogenproducing reactor", Adv. Environ. Res, 7, pp. 695-699, (2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  15. Mannix, S. P., Shin, H., Masaru, H., Rumiko, S., Chie, Y., Koichiro, H., Masaharu, I. and Yasuo I., "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter", J. of Biosci. Bioeng, 91(2), pp. 159-165 (2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  16. Narendra K. and Debabrata D., "Enhancement of hydrogen production by Enterobactor cloacae IIT-BT 08", Process Biochemistry, 35, pp. 589-593. (2000). https://doi.org/10.1016/S0032-9592(99)00109-0
  17. Zajic J. E., N. Kosaric and J. D. Brosseau., "Microbial production of hydrogen", Adv. Biochem. Eng, 7, pp. 57-109. (1978).
  18. Lowry, O. H., Rasebrough, N. J., Farr, A. L. and Randall, R. J., "Protein measurement with Folin phenol reagent", J. Biol. Chem, 193, pp. 265-275, (1951).
  19. Dubois, M., Gilles, K. A., amilton, J. K., Rebers, P. A. and Smith, F., "Colorimetric method for determination of sugars and related substances", Anal. Chem, 28(3), 350-356. (1956). https://doi.org/10.1021/ac60111a017
  20. Miller, G. L., "Use of dinitrosalicylic acid reagent for determination of reducing sugar", Anal. Chem, 31, 426-428. (1959). https://doi.org/10.1021/ac60147a030
  21. APWA, AWWA, WPCF, "Standard methods for the examination of water and wastewater", 20th ed., (1999).
  22. Vreas L., Forney L., Daae F. L. and Torsvik V., "Distribution of bacterioplankton in meromictic lake selenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA", App. Environ. Microbiol, 63(9), pp. 3367-3373. (1997)
  23. Mannix S. P., Shin H., Masaru H., Rumiko S., Chie Y., Koichiro H., Masaharu I. and Yasuo I., "Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter", J. of Biosci. Bioeng, 91(2), pp. 159-165. (2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  24. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., "Colorimetric method for determination of sugars and related substances", Analytical Chemistry, 28(3), pp. 350-356. (1956). https://doi.org/10.1021/ac60111a017
  25. Minnan, L., Jinli, H., Xuijuan, W., Jinzao, C., Chuannan, L., Fengzhang, Z. and Liangshu, X., "Isolation and characterization of a high $H_2$-Producing strain Klebsiella oxytoca HP1 from a hot spring", Research In Microbiology, 156, pp. 76-81. (2005). https://doi.org/10.1016/j.resmic.2004.08.004
  26. Hung C. H., Cheng C. H., Cheng L. H., Liang C. M. and Lin C. Y., "Application of Clrostridium-specific PCR primers on the analysis of dark fermentation hydrogenproducing bacterial community", Inter. J. Hydrogen Energy. (2007).
  27. Auch A. F., Henz S. R., Holland B. R. and Goker M., "Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences", BioMed Central Ltd. (2006).
  28. Felgenstein, J., "Confidence limits on phylogenetics: an approach using the bootstrap", Evolution 39, pp. 783-791. (1985). https://doi.org/10.2307/2408678
  29. Kimura, M., "A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences", J. Mol. Evol, 16, pp. 111-120. (1980). https://doi.org/10.1007/BF01731581
  30. Saitou, N. and Nei, M., "The neighbour-joining method: a new method for constructing phylogenetic trees", Mol. Biol. Evol, 4, pp. 406-425. (1987).
  31. Kim, M. S., Moon, K. W., Lee, I. G., Lee, T. J. and Sung, C. K., "Hydrogen Gas Production by Fermentation from Various Sugars Using Clostridium butyricum NCIB 9576", Korean Journal of Applied Microbiogy and Biotechnology, 27(1), 62-69. (1999).
  32. Wang C. C., Chang C. W., Chu, C. P., Lee, D. J., Chang B. V., Liao, C. S. and Tay, J. H., "Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation", Water. Res, 37(11), pp. 2789-2793. (2003). https://doi.org/10.1016/S0043-1354(03)00004-6
  33. Wang C. C., Chang C. W., Chu, C. P., Lee, D. J., Chang B. V. and Liao, C. S., "Producing hydrogen from wastewater sludge by Clostridium hifermentans." J. Biotechnol, 102, pp. 83-92. (2003). https://doi.org/10.1016/S0168-1656(03)00007-5
  34. Cai, M. L., Liu, J. X. and Wei, Y. S., "Enhanced biohydrogen production from sewage sludge with alkaline pretreatment", Environ. Sci. Technol, 38, pp. 3195-3202. (2004). https://doi.org/10.1021/es0349204