DOI QR코드

DOI QR Code

미생물연료전지의 전기생산에 미치는 운전온도 및 전극간 거리의 영향

Effects of Operating Temperature and Electrode Gap Distance on Electricity Generation in Microbial Fuel Cells

  • 최영대 (경남과학기술대학교 환경공학과) ;
  • 이명은 (경남과학기술대학교 환경공학과) ;
  • 송영채 (한국해양대학교 환경공학과) ;
  • 우정희 (한국해양대학교 환경공학과) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 이채영 (수원대학교 토목공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과)
  • Choi, Young-Dae (Department of Environmental Engineering, Gyeongnam National University of Science and Technology(GNTECH)) ;
  • Lee, Myoung-Eun (Department of Environmental Engineering, Gyeongnam National University of Science and Technology(GNTECH)) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime University) ;
  • Woo, Jung-Hui (Department of Environmental Engineering, Korea Maritime University) ;
  • Yoo, Kyu-Seon (Department of Civil & Environmental Engineering, Jeonju University) ;
  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology(GNTECH))
  • 발행 : 2012.03.31

초록

이형반응기 미생물연료전지(MFC) 시스템의 전기생산에 미치는 운전온도 및 전극간 거리의 영향에 관한 실험실 규모 실험을 수행하였다. 외부저항이 $(100\;{\Omega})$인 조건에서 시스템의 평균온도가 $30^{\circ}C$에서 $34^{\circ}C$로 증가할 때 외부저항 양단의 전압은 약 1.4배 증가하였다. 운전온도의 증가는 MFC의 OCV(open circuit voltage)를 증가시키며, 전극간 거리가 감소하고 운전온도가 증가함에 의해 최대전력이 얻어지는 전류가 상승하는 것으로 나타났다. MFC 시스템의 운전온도 증가에 의해 모든 전극간 거리조건에서 최대전력밀도가 크게 증가하였다. 시스템의 평균온도가 $4^{\circ}C$로 증가할 때 5~10 cm의 전극간 거리에서 얻어지는 최대전력밀도는 1.9~2.4배 증가하였고 동일한 온도조건에서는 전극간 거리가 감소할수록 전력수율이 증가하였다. MFC의 전기생산에 미치는 운전온도와 전극간 거리의 영향은 시스템의 내부저항과 밀접하게 관련되어 있는 것으로 나타났다. 즉, MFC의 운전온도가 증가하고 전극간 거리가 감소함에 의해 시스템의 내부저항이 감소함으로써 전기생산이 증가하였다.

The effects of operating temperature and electrode gap distance on electricity generation were investigated in two-chamber type MFCs. Voltages across the external resistor $(100\;{\Omega})$ were enhanced approximately 1.4 times by the increase of operating temperature from $30^{\circ}C$ to $34^{\circ}C$. The open circuit voltages (OCVs) were increased by the increase of temperature and the maximum power of MFC was obtained at higher current condition by increasing temperature and reducing electrode gap distance. The maximum power densities were enhanced from 1.9 to 2.4 times according to the experimented electrode gap distances by increasing temperature of $4^{\circ}C$. The electricity generation was increased with the decrease of electrode gap distance. The effects of operating temperature and electrode gap distance were closely connected with the internal resistance of MFC system. That is, the increase of temperature and decrease of electrode gap distance reduced the internal resistance of MFC, resulting in the enhancement of electricity generation of MFC.

키워드

참고문헌

  1. 송영채, 우정희, 유규선, "미생물연료전지의 재료 : 전극 및 분리막, 집전체", 대한환경공학회지, 31, pp. 693-704. (2009).
  2. 이명은, 조세연, 정재우, 송영채, 우정희, 유규선, 이채영, "이형반응기 미생물연료전지의 전기적 특성에 미치는 외부저항의 영향", 대한환경공학회지, 33, pp. 167-173. (2011).
  3. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Alterman, P., Verstraete and Rabaey, K., "Microbial fuel cells : methodology and technology", Environ. Sci. Technol., 40, pp. 5181-5192. (2006). https://doi.org/10.1021/es0605016
  4. Logan, B. E., "Microbial fuel cells", Wiley-Interscience (2007).
  5. Min, B., Roman, O. B. and Angelidaki, L., "Importance of temperature and anodic medium composition on microbial fuel cell performance", Biotechnol. Lett., 30, pp. 1213-1218. (2008). https://doi.org/10.1007/s10529-008-9687-4
  6. Jadhav, G. S. and Ghangrekar, M. M., "Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration", Bioresource Technol., 100, pp. 717-723. (2009). https://doi.org/10.1016/j.biortech.2008.07.041
  7. Larrosa-Guerrero, A. and Scott, K., Head, I.M., Mateo, F., Ginesta, A. and Godinez, C., "Effect of temperature on the performance of microbial fuel cells", Fuel, 89, pp. 3985-3994. (2010). https://doi.org/10.1016/j.fuel.2010.06.025
  8. Rosenbaum, M., Zhao, F., Schroder, U. and Scholz, F., "Interfacing electrocatalysis and biocatalysis with tungsten carbide : A high-performance, noble-metal-free microbial fuel cell", Angew. Che. Int. Ed., 455, pp. 6658-6661. (2006).
  9. Song, Y. C., Yoo, K. S. and Lee, S. K., "Surface floating, air cathode, microbial fuel cell with horizontal flow for continuous power production from wastewater", J. Power Sources, 195, pp. 6478-6482. (2010). https://doi.org/10.1016/j.jpowsour.2010.04.041
  10. Liu, H., Ramnarayanan, R. and Logan, B. E., "Production of electricity during wastewater treatment using a single chamber microbial fuel cell", Environ. Sci. Technol., 38, pp. 2281-2285. (2004). https://doi.org/10.1021/es034923g
  11. Cheng, S., Liu, H. and Logan, B. E., "Power density using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40, pp. 364-369. (2006). https://doi.org/10.1021/es0512071
  12. Logan, B. E. and Regan, J. M., "Electricityproducing bacterial communities in microbial fuel cells", Trends Microbiol., 14, pp. 512-518. (2006). https://doi.org/10.1016/j.tim.2006.10.003
  13. Alterman, P., Versichele, M., Marzorati, M., Boon, N., and Verstraete, W., "Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes", Bioresource Technol., 99, pp. 8895-8902. (2008). https://doi.org/10.1016/j.biortech.2008.04.061
  14. Manohar, A. K., Breschger, O., Nealson, K. H. and Mansfeld, F., "The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell", Bioelectrochemistry, 72, pp. 149-154. (2008). https://doi.org/10.1016/j.bioelechem.2008.01.004
  15. Ieropoulos, I., Winfield, J. and Greenman. J., "Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells," Bioresource Technol., 101, pp. 3520 -3525. (2010). https://doi.org/10.1016/j.biortech.2009.12.108
  16. Liang, P., Huang, X., Fan, M. Z., Cao, X. X. and Wang, C., "Composition and distribution of internal resistance in three types of microbial fuel cells," Appl. Microbiol. Biot., 77, pp. 551-558. (2007). https://doi.org/10.1007/s00253-007-1193-4