DOI QR코드

DOI QR Code

LARGE DEVIATIONS FOR THE BUSY PERIOD IN THE M/G/1 QUEUE

  • Kim, Jeongsim (Department of Mathematics Education Chungbuk National University)
  • Published : 2012.11.15

Abstract

When the service time distribution has a finite exponential moment, we present a large deviations result for the busy period distribution in the M/G/1 queue without the assumption of Abate and Whitt (1997) and Kyprianou (1971).

Keywords

References

  1. J. Abate and W. Whitt, Asymptotics for M/G/1 low-priority waiting-time tail probabilities, Queueing Systems 25 (1997), 173-223. https://doi.org/10.1023/A:1019104402024
  2. A. Baltrunas, D. J. Daley and C. Klupelberg, Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times, Stoch. Process. Appl. 111 (2004), 237-258. https://doi.org/10.1016/j.spa.2004.01.005
  3. D. R. Cox and W. L. Smith, Queues, Chapman & Hall, London, 1961.
  4. P. R. Jelenkovic and P. Momcilovic, Large deviations of square root insensitive random sums, Math. Oper. Res. 29 (2004), 398-406. https://doi.org/10.1287/moor.1030.0082
  5. E. K. Kyprianou, On the quasi-stationary distribution of the virtual waiting time in queues with Poisson arrivals, J. Appl. Probab. 8 (1971), 494-507 https://doi.org/10.2307/3212173
  6. A. De Meyer and J. L. Teugels, On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1, J. Appl. Probab. 17 (1980), 802-813. https://doi.org/10.2307/3212973
  7. A. P. Zwart, Tail asymptotics for the busy period in the GI/G/1 queue, Math. Oper. Res. 26 (2001), 485-493. https://doi.org/10.1287/moor.26.3.485.10584