DOI QR코드

DOI QR Code

Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences

  • Choi, Gang-Guk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2012.04.21
  • Accepted : 2012.05.26
  • Published : 2012.06.15

Abstract

$Arthrospira$ $platensis$ and $Arthrospira$ $maxima$ are species of cyanobacteria used in health foods, animal feed, food additives, and fine chemicals. This study conducted a comparison of the 16S rRNA gene and $cpcBA$-intergenic spacer ($cpcBA$-IGS) sequences in $Arthrospira$ strains from culture collections around the world. A cluster analysis divided the 10 $Arthrospira$ strains into two main genotypic clusters, designated I and II, where Group I contained $A.$ $platensis$ SAG 86.79, UTEX 2340, $A.$ $maxima$ KCTC AG30054, and SAG 49.88, while Group II contained $A.$ $platensis$ PCC 9108, NIES 39, NIES 46, and SAG 257.80. However, although $A.$ $platensis$ PCC 9223 belonged to Group II-2 based on its $cpcBA$-IGS sequence, this strain also belonged to Group I based on its 16S rRNA gene sequence. Phylogenetic analyses based on the 16S rRNA gene and $cpcBA$-IGS sequences showed no division between $A.$ $platensis$ and $A.$ $maxima$, plus the 16S rRNA gene and $cpcBA$-IGS sequence clusters did not indicate any well-defined geographical distribution, instead overlapping in a rather interesting way. Therefore, the current study supports some previous conclusions based on 16S rRNA gene and $cpcBA$-IGS sequences, which found that $Arthrospira$ taxa are monophyletic. However, when compared with 16S rRNA sequences, $cpcBA$-IGS sequences may be better suited to resolve close relationships and intraspecies variability.

Keywords

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Barker, G. L. A., Handley, B. A., Vacharapiyasophon, P., Stevens, J. R. & Hayes, P. K. 2000. Allele-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (cyanobacteria) filaments in the Baltic Sea. Microbiology 146:2865-2875. https://doi.org/10.1099/00221287-146-11-2865
  3. Barker, G. L. A., Hayes, P. K., O'Mahony, S. L., Vacharapiyasophon, P. & Walsby, A. E. 1999. A molecular and phenotypic analysis of Nodularia (cyanobacteria) from the Baltic Sea. J. Phycol. 35:931-937. https://doi.org/10.1046/j.1529-8817.1999.3550931.x
  4. Belay, A. 1997. Mass culture of Spirulina outdoors: the earthrise farms experience. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 131-158.
  5. Bolch, C. J. S., Blackburn, S. I., Neilan, B. A. & Grewe, P. M. 1996. Genetic characterization of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking regions. J. Phycol. 32:445-451. https://doi.org/10.1111/j.0022-3646.1996.00445.x
  6. Cho, J. -C. & Giovannoni, S. J. 2003. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-proteobacteria. Int. J. Syst. Evol. Microbiol. 53:1031-1036. https://doi.org/10.1099/ijs.0.02566-0
  7. Choi, A., Kim, S. -G., Yoon, B. -D. & Oh, H. -M. 2003. Growth and amino acid contents of Spirulina platensis with different nitrogen sources. Biotechnol. Bioprocess Eng. 8:368-372. https://doi.org/10.1007/BF02949281
  8. Chun, J. & Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45:240-245. https://doi.org/10.1099/00207713-45-2-240
  9. Crosbie, N. D., Pöckl, M. & Weisse, T. 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol. 69:5716-5721. https://doi.org/10.1128/AEM.69.9.5716-5721.2003
  10. Desikachary, T. V. & Jeeji-Bai, N. 1996. Taxonomic studies in Spirulina II. The identification of Arthrospira ('Spirulina') strains and natural samples of different geographical origins. Algol. Stud. 83:163-178.
  11. Dillon, J. C., Phuc, A. P. & Dubacq, J. P. 1995. Nutritional value of the alga Spirulina. World Rev. Nutr. Diet. 77:32-46.
  12. Geitler, L. 1932. Cyanophyceae. In Rabenhorst, L. (Ed.) Kryptogamen-Flora von Deutschland, Osterreichs und der Schweiz. Vol. 14. Akademische Verlagsgesellschaft, Leipzig, pp. 1-1196.
  13. Holmes, E. C., Worobey, M. & Rambaut, A. 1999. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16:405-409. https://doi.org/10.1093/oxfordjournals.molbev.a026121
  14. Honda, D., Yokota, A. & Sugiyama, J. 1999. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J. Mol. Evol. 48:723-739. https://doi.org/10.1007/PL00006517
  15. Ishida, T., Yokota, A. & Sugiyama, J. 1997. Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence. J. Gen. Appl. Microbiol. 43:237-241. https://doi.org/10.2323/jgam.43.237
  16. Jukes, Y. & Cantor, C. 1969. Evolution of protein molecules. In Munro, H. N. (Ed.) Mammalian Protein Metabolism. Academic Press, New York, pp. 21-132.
  17. Kim, S. -G., Rhee, S. -K., Ahn, C. -Y., Ko, S. -R., Choi, G. -G., Bae, J. -W., Park, Y. -H. & Oh, H. -M. 2006. Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl. Environ. Microbiol. 72:3252-3258. https://doi.org/10.1128/AEM.72.5.3252-3258.2006
  18. Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L. & Sivonen, K. 2001. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int. J. Syst. Evol. Microbiol. 51:513-526. https://doi.org/10.1099/00207713-51-2-513
  19. Manen, J. -F. & Falquet, J. 2002. The cpcB-cpcA locus as a tool for the genetic characterization of the genus Arthrospira (Cyanobacteria): evidence for horizontal transfer. Int. J. Syst. Evol. Microbiol. 52:861-867. https://doi.org/10.1099/ijs.0.01981-0
  20. Neilan, B. A., Jacobs, D. & Goodman, A. E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61:3875-3883.
  21. Nelissen, B., De Baere, R., Wilmotte, A. & De Wachter, R. 1996. Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis. J. Mol. Evol. 42:194-200. https://doi.org/10.1007/BF02198845
  22. Nelissen, B., Wilmotte, A., Neefs, J. -M. & De Wachter, R. 1994. Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal RNA gene sequence analysis. Syst. Appl. Microbiol. 17:206-210. https://doi.org/10.1016/S0723-2020(11)80009-3
  23. Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S. & Watanabe, M. M. 1998. 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol. Lett. 164:119-124. https://doi.org/10.1111/j.1574-6968.1998.tb13076.x
  24. Pulz, O. & Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635-648. https://doi.org/10.1007/s00253-004-1647-x
  25. Robertson, B. R., Tezuka, N. & Watanabe, M. M. 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51:861-871. https://doi.org/10.1099/00207713-51-3-861
  26. Rudi, K., Skulberg, O. M. & Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180:3453-3461.
  27. Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  28. Scheldeman, P., Baurain, D., Bouhy, R., Scott, M., Mühling, M., Whitton, B. A., Belay, A. & Wilmotte, A. 1999. Arthrospira ('Spirulina') strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiol. Lett. 172:213-222. https://doi.org/10.1111/j.1574-6968.1999.tb13471.x
  29. Teneva, I., Dzhambazov, B., Mladenov, R. & Schirmer, K. 2005. Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus. J. Phycol. 41:188-194. https://doi.org/10.1111/j.1529-8817.2005.04054.x
  30. Tomaselli, L. 1997. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 1-15.
  31. Turner, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46:327-338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
  32. Viti, C., Ventura, S., Lotti, F., Capolino, E., Tomaselli, L. & Giovannetti, L. 1997. Genotypic diversity and typing of cyanobacterial strains of the genus Arthrospira by very sensitive total DNA restriction profile analysis. Res. Microbiol. 148:605-611. https://doi.org/10.1016/S0923-2508(97)88084-9
  33. Vonshak, A. 1997a. Outdoor mass production of Spirulina: the basic concept. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 79-99.
  34. Vonshak, A. 1997b. Use of Spirulina biomass. In Vonshak, A. (Ed.) Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London, pp. 205-212.
  35. Wilmotte, A. & Golubic, S. 1991. Morphological and genetic criteria in the taxonomy of cyanophyta cyanobacteria. Algol. Stud. 64:1-24.

Cited by

  1. New Medium for Pharmaceutical GradeArthrospira vol.2013, 2013, https://doi.org/10.1155/2013/203432
  2. 유전자 기법을 이용한 북한강 수역 Anabaena strain의 동정 및 Geosmin 생산 잠재성 분석 vol.47, pp.4, 2014, https://doi.org/10.11614/ksl.2014.47.4.342
  3. Taxonomic revision of commercially used Arthrospira (Cyanobacteria) strains: a polyphasic approach vol.54, pp.4, 2012, https://doi.org/10.1080/09670262.2019.1624832
  4. Research progress in the taxonomic identification of algae on the basis of molecular markers vol.33, pp.6, 2012, https://doi.org/10.18307/2021.0601