DOI QR코드

DOI QR Code

Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure

  • Gong, Qing (College of Chemistry and Molecular Sciences, Wuhan University) ;
  • Luo, Huadong (College of Chemistry and Molecular Sciences, Wuhan University) ;
  • Cao, Di (College of Chemistry and Molecular Sciences, Wuhan University) ;
  • Zhang, Haibo (College of Chemistry and Molecular Sciences, Wuhan University) ;
  • Wang, Wenjing (College of Chemistry and Molecular Sciences, Wuhan University) ;
  • Zhou, Xiaohai (College of Chemistry and Molecular Sciences, Wuhan University)
  • Received : 2012.02.18
  • Accepted : 2012.03.15
  • Published : 2012.06.20

Abstract

Rhodamine B (RhB) and rhodamine 6G (Rh6G) were employed as catalysts for the synthesis of cyclic carbonate from carbon dioxide and epoxide. It turned out that the catalytic activity of Rh6G was nearly 29 times higher than that of RhB at 1 atm pressure, $90^{\circ}C$. Furthermore, the catalytic efficiency of RhB and Rh6G was greatly enhanced with triethylamine as co-catalyst. Under the optimized conditions, the best isolated yield (93%) of cyclic carbonate was achieved without organic solvent and metal component.

Keywords

References

  1. Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510. https://doi.org/10.1002/anie.201102010
  2. Jessop, P. G.; Joo, F.; Tai, C. C. Coord. Chem. Rev. 2004, 248, 2425. https://doi.org/10.1016/j.ccr.2004.05.019
  3. Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. https://doi.org/10.1021/cr068357u
  4. Yu, K. M.; Curcic, I.; Gabriel, J.; Tsang, S. C. ChemSusChem. 2008, 1, 893. https://doi.org/10.1002/cssc.200800169
  5. Riduan, S. N.; Zhang, Y. G. Dalton Trans. 2010, 39, 3347. https://doi.org/10.1039/b920163g
  6. Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
  7. Yoshida, M.; Ihara, M.; Chem. Eur. J. 2004, 10, 2886. https://doi.org/10.1002/chem.200305583
  8. Bayardon, J.; Holz, J.; Schaffner, B.; Andrushko, V.; Verevkin, S.; Preetz, A., et al. Angew. Chem., Int. Ed. 2007, 46, 5971. https://doi.org/10.1002/anie.200700990
  9. Clements, J. H. Ind. Eng. Chem. Res. 2003, 42, 663. https://doi.org/10.1021/ie020678i
  10. Shaikh, A. A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951. https://doi.org/10.1021/cr950067i
  11. Kruper, W. J.; Dellar, D. D. J. Org. Chem. 1995, 60, 725. https://doi.org/10.1021/jo00108a042
  12. Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498. https://doi.org/10.1021/ja0164677
  13. Shen, Y. M.; Duan, W. L.; Shi, M. J. Org. Chem. 2003, 68, 1559. https://doi.org/10.1021/jo020191j
  14. Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561. https://doi.org/10.1021/ol026189w
  15. Bok, T.; Noh, E. K.; Lee, B. Y. Bull. Korean Chem. Soc. 2006, 27, 1171. https://doi.org/10.5012/bkcs.2006.27.8.1171
  16. Ra, C. S.; Hwang, J. C.; Lee, H. B.; Shim, J. Bull. Korean Chem. Soc. 2007, 28, 1060. https://doi.org/10.5012/bkcs.2007.28.6.1060
  17. Yano, T.; Matsui, H.; Koike, T.; Ishiguro, H.; Fujihara, H.; Yoshihara, M., et al. Chem. Commun. 1997, 1129.
  18. Sun, J. M.; Fujita, S.; Arai, M. J. Organomet. Chem. 2005, 690, 3490. https://doi.org/10.1016/j.jorganchem.2005.02.011
  19. Nguyen, L. V.; Lee, B.; Nguyen, D. Q.; Kang, M.; Lee, H.; Ryu, S., et al. Bull. Korean Chem. Soc. 2008, 29, 148. https://doi.org/10.5012/bkcs.2008.29.1.148
  20. Wang, J. Q.; Yue, X. D.; Cai, F.; He, L. N. Catal. Commun. 2007, 8, 167. https://doi.org/10.1016/j.catcom.2006.05.049
  21. Zhang, S. J.; Chen, Y. H.; Li, F. W.; Lu, X. M.; Dai, W. B.; Mori, R. Catal. Today 2006, 115, 61. https://doi.org/10.1016/j.cattod.2006.02.021
  22. Barkakaty, B.; Morino, K.; Sudo, A.; Endo, T.; Green Chem. 2010, 12, 42. https://doi.org/10.1039/b916235f
  23. Ochiai, B.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5673. https://doi.org/10.1002/pola.22316
  24. Kihara, N.; Hara, N.; Endo, T. J. Org. Chem. 1993, 58, 6198. https://doi.org/10.1021/jo00075a011
  25. Motokura, K.; Itagaki, S.; Iwasawa, Y.; Miyaji, A.; Baba, T.; Green Chem. 2009, 11, 1876. https://doi.org/10.1039/b916764c
  26. Melendez, J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007, 3323.
  27. Yin, S. F.; Shimada, S. Chem. Commun. 2009, 1136.
  28. Kim, Y. J.; Varma, R. S. J. Org. Chem. 2005, 70, 7882. https://doi.org/10.1021/jo050699x
  29. Sun, J.; Ren, J.; Zhang, S.; Cheng, W. Tetrahedron Lett. 2009, 50, 423. https://doi.org/10.1016/j.tetlet.2008.11.034
  30. Zhou, Y. X.; Hu, S. Q.; Ma, X. M.; Liang, S. G.; Jiang, T.; Han, B. X. J. Mol. Catal. A: Chem. 2008, 284, 52. https://doi.org/10.1016/j.molcata.2008.01.010
  31. Sun, J.; Han, L.; Cheng, W.; Wang, J.; Zhang, X.; Zhang, S. ChemSusChem. 2011, 4, 502. https://doi.org/10.1002/cssc.201000305
  32. Han, L.; Choi, H.-J.; Choi, S.-J.; Liu, B.; Park, D.-W. Green Chem. 2011, 13, 1023. https://doi.org/10.1039/c0gc00612b

Cited by

  1. and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures vol.4, pp.6, 2014, https://doi.org/10.1039/C3CY00998J
  2. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies vol.7, pp.13, 2017, https://doi.org/10.1039/C7CY00438A
  3. Two coordination polymers constructed from a multidentate carboxylic acid ligand with a tertiary amine serve as acid–base catalysts for the synthesis of chloropropene carbonate from CO vol.43, pp.37, 2012, https://doi.org/10.1039/c4dt00908h
  4. Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO2 Utilization vol.13, pp.3, 2012, https://doi.org/10.3390/en13030521
  5. Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO2 to Carbonates vol.9, pp.5, 2021, https://doi.org/10.1021/acssuschemeng.0c08388