DOI QR코드

DOI QR Code

Selective Catalytic Oxidation of Ammonia over Noble Catalysts Supported on Acidic Fe-ZSM5 Supports

산성 Fe-ZSM5 담체에 담지된 귀금속 촉매를 활용한 암모니아의 선택적 산화반응

  • Kim, Min-Sung (Department of Chemical & Biological Engineering, Korea University) ;
  • Lee, Dae-Won (Research Institute of Clean Chemical Engineering Systems, Korea University) ;
  • Lee, Kwan-Young (Department of Chemical & Biological Engineering, Korea University)
  • 김민성 (고려대학교 화공생명공학과) ;
  • 이대원 (고려대학교 청정화공 시스템 연구소) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Received : 2012.03.20
  • Accepted : 2012.03.27
  • Published : 2012.03.30

Abstract

In this study, we investigated the activity of Pd and Pt supported on acidic Fe-ZSM5 supports for selective catalytic oxidation of ammonia ($NH_3$-SCO). Among the catalysts, Pt/Fe-ZSM5 catalyst exhibited superior $NH_3$-SCO activity to Pd/Fe-ZSM5 catalyst. We also tested Pt/Fe-ZSM5 catalysts with different Fe loading using ion-exchange method to prepare Fe-ZSM5 supports, which resulted in the increased catalytic performance with smaller Fe content: $NH_3$ was oxidized completely at low temperature ($250^{\circ}C$). The physicochemical properties of Fe-ZSM5 were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on $NH_3$-SCO by Inductively coupled plasma-atomic emissions spectrometer (ICP-AES), $N_2$ sorption, X-ray diffraction (XRD), temperature programmed desorption of $NH_3$ ($NH_3$-TPD) technique.

본 연구에서는 산성을 갖는 Fe-ZSM5를 담체로 활용하여 Pd, Pt 등 귀금속을 담지한 후, 제조 촉매의 암모니아의 선택적 산화반응 활성을 평가하였다. 이들 중 Pt/Fe-ZSM5가 Pd/Fe-ZSM5 보다 높은 활성을 나타냈다. 또한 Pt/Fe-ZSM5 촉매에서 ZSM5 구조체 내 Fe의 이온교환량을 달리한 촉매의 실험을 수행하여, 암모니아의 선택적 산화반응에 가장 우수한 활성을 보이는 최적 조성비를 탐색하였다. 그 결과, Fe의 이온교환량이 적을수록 반응 활성이 증가하는 경향을 보였고, 저온 영역인 $250^{\circ}C$에서 100%의 암모니아 전환율을 나타냈다. 이와 같이 암모니아의 선택적 산화반응에 효과적인 Fe-ZSM5 담체에 대하여, ICP-AES, BET, XRD, $NH_3$-TPD 등과 같은 특성 분석을 수행하여 제조 촉매의 구조와 물성이 반응활성에 미치는 영향을 검토해보았다.

Keywords

References

  1. Yun, B. K., Kim, C. M., Kim, J. H., Kim, M. Y., Choi, H. H., Cho, G. B., Kim, H. S., and Jeong, Y. G., "A numerical Sstudy on the Diesel NOx Reduction with the Urea-SCR Aftertreatment," Transactions of KSAE, 9(6), 328-333 (2008).
  2. Lee, D. W., Song, S. J., and Lee, K. W., "Reduction of Lean $NO_{2}$ with Diesel Soot over Metal-exchanged ZSM5, Perovskite and $\gamma$-Alumina Catalysts," Korean J. Chem. Eng., 27(2), 452-458 (2010). https://doi.org/10.1007/s11814-010-0075-0
  3. Shinjoh, H., "Noble Metal Sintering Suppression Technology in Three-way Catalyst: Automotive Three-way Catalysts with the Noble Metal Sintering Suppression Technology Based on the Support Anchoring Effect," Catal. Surv. Asia, 13, 184-190 (2009). https://doi.org/10.1007/s10563-009-9076-6
  4. Kim, H. S., Jeong, Y. G., Song, M. H., Lee, S. W., Park, H. D., and Hwang, J. W., "Influential Factors for NOx Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine," Transactions of KSAE, 17(1), 154-161 (2008).
  5. Sahu, J. N., Hussain, S., and Meikap, B. C., "Studies on the Hydrolysis of Urea for Production of Ammonia and Modeling for Flow Characterization in Presence of Stirring in a Batch Reactor Using Computational Fluid Dynamics," Korean J. Chem. Eng., 28(6), 1380-1385 (2011). https://doi.org/10.1007/s11814-010-0524-9
  6. Kang, M., Choi, J. S., Park, E. D., and Yie, J. E., "Lowemperature Catalytic Reduction of Nitrogen Oxides with Ammonia over Supported Manganese Oxide Catalysts," Korean J. Chem. Eng., 24(1), 191-195 (2007). https://doi.org/10.1007/s11814-007-5031-2
  7. Quan, X., Wang, F., Zhao, Q., Zhao, T., and Xiang, J., "Air Stripping of Ammonia in a Water-sparged Aerocyclone reactor," J. Hazard. Mater., 170, 983-988 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.083
  8. Ilchenko, N. I., and Golodets, G. I., "Catalytic Oxidation of Ammonia," J. Catal., 39, 73-86 (1975). https://doi.org/10.1016/0021-9517(75)90283-3
  9. Jang, H. T., Park, Y. K., Ko, Y. S., and Cha, W. S., "Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts," Korean Chem. Eng. Res., 46(3), 498-505 (2008).
  10. Gang, Lu, "Catalytic Oxidation of Ammonia to Nitrogen," Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, 2002.
  11. Yang, R. T., Pinnavaia, T. J., Li, W., and Zhang, W., "$Fe^{3+}$ Exchanged Mesoporous Al-HMS and Al-MCM-41 Molecular Sieves for Selective Catalytic Reduction of NO with $NH_{3}$," J. Catal., 172, 488-493 (1997). https://doi.org/10.1006/jcat.1997.1899
  12. Olofsson, G., Hinz, A., and Andersson, A., "A Transient Response Study of the Selective Catalytic Oxidation of Ammonia to Nitrogen on Pt/CuO/$Al_{2}O_{3}$," Chem. Eng. Sci., 59, 4113-4123 (2004). https://doi.org/10.1016/j.ces.2004.03.047
  13. Lin, S. D., Gluhoi, A. C., and Nieuwenhuys, B. E., "Ammonia Oxidation over Au/MOx/$\gamma$-$Al_{2}O_{3}$-Activity, Selectivity and FTIR Measurements," Catal. Today, 90, 3-14 (2004). https://doi.org/10.1016/j.cattod.2004.04.047
  14. Amblard, M., Burch, R., and Southward, B.W.L., "A Study of the Mechanism of Selective Conversion of Ammonia to Nitrogen on Ni/$\gamma$-$Al_{2}O_{3}$ Under Strongly Oxidising Conditions," Catal. Today, 59, 365-371 (2000). https://doi.org/10.1016/S0920-5861(00)00301-1
  15. Jang, H. T., Park, Y. K., and Ko, Y. S., "Ammonia Conversion in the Presence of Precious Metal Catalysts," Korean Chem. Eng. Res., 46(4), 806-812 (2008).
  16. Long, R. Q., and Yang, R. T., "Selective Catalytic Oxidation (SCO) of Ammonia to Nitrogen over Fe-exchanged Zeolites," J. Catal., 201, 145-152 (2001). https://doi.org/10.1006/jcat.2001.3234
  17. Qi, G., and Yang, R. T., "Selective Catalytic Oxidation (SCO) of Ammonia to Nitrogen over Fe/ZSM-5 Catalysts," Appl. Catal., A, 287, 25-33 (2005). https://doi.org/10.1016/j.apcata.2005.03.006
  18. Long, R. Q., and Yang, R. T., "Noble Metal (Pt, Rh, Pd) Promoted Fe-ZSM-5 for Selective Catalytic Oxidation of Ammonia to $N_{2}$ at Low Temperatures," Catal. Lett., 78, 353-357 (2002). https://doi.org/10.1023/A:1014929222854
  19. Qi, G. Gatt, J. E., and Yang, R. T., "Selective Catalytic Oxidation (SCO) of Ammonia to Nitrogen over Fe-exchanged Zeolites Prepared by Sublimation of $FeCl_{3}$," J. Catal., 226, 120- 28 (2004). https://doi.org/10.1016/j.jcat.2004.05.023
  20. Topsoe, N. Y., Pedersen, K, and Derouane, E. G., "Infrared and Temperature-programmed Desorption Study of the Acidic Properties of ZSM-5-type Zeolites," J. Catal., 70, 41-52 (1981). https://doi.org/10.1016/0021-9517(81)90315-8

Cited by

  1. Imulation of temperature field in swirl pulverized coal boiler vol.121, pp.None, 2012, https://doi.org/10.1088/1755-1315/121/5/052010
  2. Reduction Performance of Elemental Mercury and NOx for Fossil-fuel Combustion Simulation Process vol.36, pp.5, 2012, https://doi.org/10.5572/kosae.2020.36.5.633