DOI QR코드

DOI QR Code

Quality Characteristics and Antioxidant Activity of Mulberry Leaf Tea Fermented by Monascus pilosus

Monascus pilosus로 발효시킨 뽕잎차의 품질특성과 항산화능

  • Lee, Sang-Il (Dept. of Food, Nutrition and Cookery, Keimyung College) ;
  • Lee, Ye-Kyung (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Choi, Jong-Keun (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Yang, Seung-Hwan (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Lee, In-Ae (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Kim, Soon-Dong (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University)
  • 이상일 (계명문화대학 식품영양조리학부) ;
  • 이예경 (명지대학교 생명과학정보학부) ;
  • 최종근 (명지대학교 생명과학정보학부) ;
  • 양승환 (명지대학교 생명과학정보학부) ;
  • 이인애 (명지대학교 생명과학정보학부) ;
  • 서주원 (명지대학교 생명과학정보학부) ;
  • 김순동 (명지대학교 생명과학정보학부)
  • Received : 2012.01.25
  • Accepted : 2012.04.17
  • Published : 2012.05.31

Abstract

This study was carried out to investigate the contents of monacolin K and citrinin, along with the sensory quality and antioxidant activity of mulberry leaf tea fermented by $Monascus$ $pilsous$ (FMM). Total monacolin K content of FMM was 0.058%, but citrinin was not detected. Redness of brewed FMM was remarkably higher than that of unfermented mulberry leaf tea (UFM). In sensory evaluation of brewed FMM, while astringent taste and savory taste were lower, flavor, color, and overall acceptability were significantly higher than those of UFM. Total polyphenol contents of UFM and FMM were 83.1 and 23.61 mg/g (dry basis), total flavonoid contents of UFM and FMM were 17.96 and 3.99 mg/g (dry basis), respectively. Xanthine oxidase (XO) inhibitory activity and superoxide dismutase (SOD)-like activity of FMM were lower than those of UFM. Electron-donating ability and ferric-reducing antioxidant power of FMM were slightly lower than those of UFM. However, the antioxidant activities of FMM per polyphenol content were markedly higher than those of UFM. These results suggest that FMM may scavenge excessive reactive oxygen spices (ROS) via inhibition of XO and SOD-like activity. Furthermore, FMM demonstrated relatively higher acceptability and antioxidant ability along with functionality of $Hongguk$ (red yeast rice), and therefore could be utilized to prevent various ROS-induced diseases.

$Monascus$ $pilosus$에 의한 발효뽕잎차(FMM: fermented mulberry leaves tea)의 monacolin K 함량, citrinin의 유무, 관능적 품질, total polyphenol 및 total flavonoid의 함량, ROS 생성계 효소인 xanthine oxidase 저해활성 및 ROS 소거계 효소류의 활성을 건조뽕잎(UFM: unfermented mulberry leaves)과 비교하였다. FMM은 UFM에 비하여 색상 기호도 및 종합적 기호도가 유의적으로 높았다. FMM에 함유된 total monacolin K 함량은 0.056%(dry basis)로 활성형이 83.93%를 차지하였으며 citrinin은 검출되지 않았다. Total polyphenol과 total flavonoid의 함량 모두 UFM에서 현저히 높았다. XO 저해활성과 SOD 유사활성은 농도에 비례하여 높았으며 UFM이 FMM에 비하여 높았다. 전자공여능과 ferric-reducing antioxidant power(FRAP)의 경우도 UFM과 FMM 모두에서 농도에 비례하여 증가하였으나, UFM에서 FMM에 비하여 현저히 증가하였다. Ferrous iron chelating 활성의 경우에도 추출물의 첨가 농도에 비례하여 증가하였고 그 증가의 정도는 UFM이 FMM에 비해 더욱 강하게 나타났으나, 4.0 mg/mL 이상의 농도에서는 감소하였다. 한편 polyphenol 또는 flavonoid 함량 당의 XO 저해활성과 SOD 유사활성 및 FRAP는 FMM이 UFM에 비하여 현저하게 높았다. 이상의 결과들을 종합해 볼 때, 뽕잎을 $M.$ $pilosus$로 발효시킨 FMM은 홍국의 기능성을 가짐과 더불어 상당히 강한 항산화능과 기호성을 관찰할 수 있어 ROS로 야기될 수 있는 여러 질병의 예방과 치료에 도움을 줄 수 있는 기초자료가 될 것이라 사료된다.

Keywords

References

  1. Kim HB, Lee YW, Lee WJ, Moon JY. 2001. Physiological effects and sensory characteristics of mulberry fruit wine with chongilppong. Korean J Seris Sci 43: 16-20.
  2. Lee IS, Lee SW, Lee IZ. 2003. Effect of tissue cultured ginseng on blood glucose and lipid in streptozotocin-induced diabetic rats. Korean J Food Sci Technol 35: 280-285.
  3. Chae JY, Lee JY, Hoang IS, Whangbo D, Choi PW, Lee WC, Kim JW, Kim SY, Choi SW, Rhee SJ. 2003. Analysis of functional components of leaves of different mulberry cultivars. J Korean Soc Food Sci Nutr 32: 15-21. https://doi.org/10.3746/jkfn.2003.32.1.015
  4. Omori M, Yano T, Okamoto J, Tsushida T, Murai T, Higuchi M. 1987. Effect of anaerobically treated tea (Gabaron tea) on blood pressure of spontaneously hypertensive rats. Nippon Nogeikagaku Kaishi 61: 1449-1451. https://doi.org/10.1271/nogeikagaku1924.61.1449
  5. Tews JK. 1981. Dietary GABA decreases body weight of genetically obese mice. Life Sci 29: 2535-2542. https://doi.org/10.1016/0024-3205(81)90709-8
  6. Bea MJ, Ye EJ. 2010. Antioxidant activity and in vitro for anticancer effects of manufactured fermented mulberry leaf tea. J Korean Soc Food Sci Nutr 39: 796-804. https://doi.org/10.3746/jkfn.2010.39.6.796
  7. Cho YJ, An BJ. 2008. Anti-inflammatory effect of extracts from Cheongmoknosang (Morus alba L.) in lipopolysaccharide-stimulated Raw cells. J Korean Soc Appl Biol Chem 51: 44-48.
  8. Kim SY, Lee WC, Kim HB, Kim AJ, Kim SK. 1998. Antihyperlipidemic effects of methanol extracts from mulberry leaves in cholesterol induced hyperlipidemia in rats. J Korean Soc Food Sci Nutr 27: 1217-1222.
  9. Hansawasdi C, Kawabata J. 2006. $\alpha$-Glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 77: 568-573. https://doi.org/10.1016/j.fitote.2006.09.003
  10. Lim MJ, Bae YI, Jeong CH, Cho BR, Choi JS. 2007. Phytochemical components of mulberry leaf tea by different roasting processes. J Agric Life Sci 41: 17-24.
  11. Kim DC, In MJ, Chae HJ. 2010. Preparation of mulberry leaves tea and its quality characteristics. J Appl Biol Chem 53: 56-59. https://doi.org/10.3839/jabc.2010.010
  12. Bae MJ, Ye EJ. 2010. Analysis of active components and quality characteristics in the manufacturing of fermented mulberry leaf (Morus alba) tea. J Korean Soc Food Sci Nutr 39: 859-863. https://doi.org/10.3746/jkfn.2010.39.6.859
  13. Kang OJ. 2010. Production of fermented tea with Rhodotorula yeast and comparison of its antioxidant effects to those of unfermented tea. Korean J Food Cookery Sci 26: 422-427.
  14. Ma JY, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. 2000. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 48: 220-5225. https://doi.org/10.1021/jf9909757
  15. Endo A. 1980. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot (Tokyo) 33: 334-336. https://doi.org/10.7164/antibiotics.33.334
  16. Choi MJ, Yu TS. 2004. Effects of red-yeast-rice supplementation on bone mineral density and bone mineral content in overiectomized rats. Korean J Nutr 37: 423-430.
  17. Inoue K, Mukaiyama Y, Tsuji K, Tanabe N, Tarui S, Abe S, Takahashi M. 1995. Effect of beni-koji extracts on blood pressure in primary hypertensive volunteers. Jpn J Nutr 53: 263-271. https://doi.org/10.5264/eiyogakuzashi.53.263
  18. Martinkova L, Patakova-Juzlova P, Krent V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V. 1999. Biological activities of oligoketide pigments of Monascus purpreus. Food Addit Contam 16: 15-24. https://doi.org/10.1080/026520399284280
  19. Yasukawa K, Takahashi M, Yamanouchi S, Takido M. 1996. Inhibitory effect of oral administration of Monascus pigment on tumor promotion in two-stage carcinogenesis in mouse skin. Oncology 53: 247-249. https://doi.org/10.1159/000227568
  20. Kang MR, Kim JY, Hyun YJ, Kim HJ, Yeo HY, Song YD, Lee JH. 2008. The effect of red-yeast-rice supplement on serum lipid profile and glucose control in subjects with impaired fasting glucose or impaired glucose tolerance. Korean J Nutr 41: 31-40.
  21. Kim EY, Rhyu MR. 2008. Antimicrobial activities of Monascus koji extracts. Korean J Food Sci Technol 40: 76-81.
  22. Endo A. 1979. Monacolin-K, a new hypocholesterolemic agent produced by Monascus species. J Antibiot (Tokyo) 32: 852-854. https://doi.org/10.7164/antibiotics.32.852
  23. Birch AJ, Cassera A, Fitton P, Holker JSE, Smith H, Tompson GA, Whalley WB. 1962. Studies in relation to biosynthesis. Part XXX. Rotiorin, monascin and rubropunctatin. J Chem Soc 3583-3587. https://doi.org/10.1039/jr9620003583
  24. Tsuji K, Ichikawa T, Tanabe N, Obata H, Abe S, Tarui S, Nakagawa Y. 1992. Extraction of hypotensive substance from wheat benzi-koji. Nippon Shokuhin Kogyo Gakkaishi 39: 913-918. https://doi.org/10.3136/nskkk1962.39.913
  25. Lee SI, Kim JW, Lee YK, Yang SH, Lee IA, Suh JW, Kim SD. 2011. Anti-obesity effect of Monascus pilosus mycelial extract in high fat diet induced obese rats. J Appl Biol Chem 54: 197-205. https://doi.org/10.3839/jabc.2011.033
  26. Lee SI, Kim JW, Lee YK, Yang SH, Lee IA, Suh JW, Kim SD. 2011. Protective effect of Monascus pilosus mycelial extract on hepatic damage in high-fat diet induced-obese rats. J Appl Biol Chem 54: 206-213. https://doi.org/10.3839/jabc.2011.034
  27. Roman K, Vladimir K. 1993. Determination of lovastatin (mevinolin) and mevinolinic acid in fermentation liquids. J Chromatogr 630: 415-417. https://doi.org/10.1016/0021-9673(93)80480-V
  28. Reinhard H, Zimmerli B. 1999. Reversed-phase liquid chromatographic behavior of the mycotoxins citrinin and ochratoxin A. J Chromatogr A 862: 147-159. https://doi.org/10.1016/S0021-9673(99)00929-2
  29. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Duran N. 2003. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82: 409-416. https://doi.org/10.1016/S0308-8146(02)00590-3
  30. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in burkina fasan honey, as well as their radical scavenging activity. Food Chem 91: 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
  31. Ozer N, Muftuoglu M, Ataman D, Ercan A, Ogus IH. 1999. Simple, high-yield purification of xanthine oxidase from bovine milk. J Biochem Biophys Methods 39: 153-159. https://doi.org/10.1016/S0165-022X(99)00012-3
  32. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244: 3855-3863.
  33. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  34. Martin JP, Dailey M, Sugarman E. 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255: 329-336. https://doi.org/10.1016/0003-9861(87)90400-0
  35. Oyaizu M. 1986. Studies on product of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  36. Dinis TCP, Madeira VMC, Almeida LM. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-amino salicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315: 161-169. https://doi.org/10.1006/abbi.1994.1485
  37. Juzlova P, Martinkova L, Kren V. 1996. Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16: 163-170. https://doi.org/10.1007/BF01569999
  38. Manzoni M, Rollini M. 2002. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58: 555-564. https://doi.org/10.1007/s00253-002-0932-9
  39. Thomson PD, Clarkson P, Karas RH. 2003. Statin-associated myopathy. JAMA 289: 1681-1690. https://doi.org/10.1001/jama.289.13.1681
  40. Pyo YH. 2006. Optimum conditions for production of mevinolin from the soybean fermented with Monascus sp. Korean J Food Sci Technol 38: 256-261.
  41. Wang JJ, Lee CL, Pan TM. 2004. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52: 6977-6982. https://doi.org/10.1021/jf049783o
  42. Chen F, Hu X. 2005. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103: 331-337. https://doi.org/10.1016/j.ijfoodmicro.2005.03.002
  43. Blanc PJ, Loret MO, Goma G. 1995. Production of citrinin by various species of Monascus. Biotechnol Lett 17: 291-294. https://doi.org/10.1007/BF01190639
  44. Eisenbrand G. 2006. Toxicological evaluation of red mould rice. Mol Nutr Food Res 50: 322-327. https://doi.org/10.1002/mnfr.200690011
  45. Ngure FM, Wanyoko JK, Symon M, Mahungu SM, Shitandi AA. 2009. Catechins depletion patterns in relation to theaflavin and thearubigins formation. Food Chem 115: 8-14. https://doi.org/10.1016/j.foodchem.2008.10.006
  46. Zuo YG, Chen H, Deng YW. 2002. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57: 307-316. https://doi.org/10.1016/S0039-9140(02)00030-9
  47. Michiharu A, Naohiro T, Yoshito I, Chihiro T, Takuji I, Kiyohiko N. 2008. Characteristic fungi observed in the fermentation process of Puer tea. J Food Microbiol 124: 199-204. https://doi.org/10.1016/j.ijfoodmicro.2008.03.008
  48. Arakawa H, Maeda M, Okubo S, Shimamura T. 2004. Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 27: 277-281. https://doi.org/10.1248/bpb.27.277
  49. Park GY, Lee SJ, Lim JG. 1997. Effects of green tea catechin on cytochrome P450, xanthine oxidase activities in liver and liver damage in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 26: 901-907.
  50. Parks DA, Granger DN. 1986. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548: 87-99.
  51. Roy R, McCord JM. 1982. Ischemia-induced conversion of xanthine dehydrogenase to xanthine oxidase. Fed Proc 41: 767-773.
  52. Ham YK, Kim SW. 2004. Protective effects of plant extract on the hepatocytes of rat treated with carbon tetrachloride. J Korean Soc Food Sci Nutr 33: 1246-1251. https://doi.org/10.3746/jkfn.2004.33.8.1246
  53. Hashim MS, Lincy S, Remya V, Teena M, Anila L. 2005. Effect of polyphenolic compounds from Coriandrum sativum on $H_2O_2$-induced oxidative stress in human lymphocytes. Food Chem 92: 653-660. https://doi.org/10.1016/j.foodchem.2004.08.027
  54. Lee F. 1991. Developmental aspects of experimental pulmonary oxygen toxicity. Free Rad Biol 11: 463-494. https://doi.org/10.1016/0891-5849(91)90062-8
  55. Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. 1988. Inhibition of cow's milk xanthine oxidase by flavonoids. J Nat Prod 51: 345-348. https://doi.org/10.1021/np50056a030
  56. Hatano T, Yasuhara T, Yoshihara R, Ikegami Y, Matsuda M, Yazaki K, Agata I, Nishibe S, Noro T, Yoshizaki M. 1991. Inhibitory effects of galloylated flavonoids on xanthine oxidase. Plant Med 57: 83-84. https://doi.org/10.1055/s-2006-960028
  57. Cho YJ, Chun SS, Choi C. 1993. Inhibitory effect of condensed tannins isolated from Korean green tea against xanthine oxidase. J Korean Soc Food Nutr 22: 418-422.
  58. Lin CM, Chen CS, Chen CT, Liang YC, Lin JK. 2002. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem Biophys Res Commun 294: 167-172. https://doi.org/10.1016/S0006-291X(02)00442-4
  59. Van Hoorn DE, Nijveldt RJ, Van Leeuwen PA, Hofman Z, M'Rabet L, De Bont DB, Van Norren K. 2002. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur J Pharmacol 451: 111-118. https://doi.org/10.1016/S0014-2999(02)02192-1
  60. Da Silva SL, Da Silva A, Honório KM, Marangoni S, Toyama MH, Da Silva ABF. 2004. The influence of electronic, steric and hydrophobic properties of flavonoid compounds in the inhibition of the xanthine oxidase. J Mol Struct (Theochem) 684: 1-7. https://doi.org/10.1016/j.theochem.2004.04.003
  61. Choi CH, Song ES, Kim SJ, Kang MH. 2003. Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J Food Sci Technol 35: 1216-1220.
  62. Torel J, Gillard J, Gillard P. 1986. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem 25: 383-385. https://doi.org/10.1016/S0031-9422(00)85485-0
  63. Sang S, Tian S, Jhoo JW, Wang H, Stark RE, Rosen RT, Yang CS, Ho CT. 2003. Chemical studies of the antioxidant mechanism of theaflavins. Radical reaction products of theaflavin 3,3'-digallate with hydrogen peroxide. Tetrahedron Lett 44: 5583-5587. https://doi.org/10.1016/S0040-4039(03)01382-0
  64. Osawa T. 1994. Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p 241-251.
  65. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. 2002. Buckwheat the source of antioxidant activity in functional foods. Food Res Int 35: 207-211. https://doi.org/10.1016/S0963-9969(01)00185-5
  66. Zhang L, Ma ZZ, Che YY, Li N, Tu PF. 2010. Protective effect of a new amide compound from Pu-erh tea on human micro-vascular endothelial cell against cytotoxicity induced by hydrogen peroxide. Fitoterapia 82: 267-271.
  67. Choi SW, Kang WW, Chung SK, Cheon SH. 1996. Antioxidative activity of flavonoids in persimmon leaves. Food Sci Biotechnol 5: 119-123.
  68. Shin SR, Hong JY, Nam HS, Yoon KY, Kim KS. 2006. Antioxidative effects of extracts of Korean herbal materials. J Korean Soc Food Sci Nutr 35: 187-191. https://doi.org/10.3746/jkfn.2006.35.2.187
  69. Hsu CL, Chen W, Weng YM, Tseng CY. 2003. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem 83: 85-92. https://doi.org/10.1016/S0308-8146(03)00053-0
  70. Elmastas M, Gulcin I, Isildak O, Kufrevioglu OI, Ibaoglu K, Aboul-Enein HY. 2006. Radical scavenging activity and antioxidant capacity of bay leaf extracts. J Iran Chem Soc 3: 258-266. https://doi.org/10.1007/BF03247217

Cited by

  1. Effect of Mulberry Extract on the Lipid Profile and Liver Function in Mice Fed a High Fat Diet vol.29, pp.3, 2016, https://doi.org/10.9799/ksfan.2016.29.3.411
  2. Effects of Hot-Water Extract of Mulberry Leaf Tea Fermented by Monascus pilosus on Body Weight and Hepatic Antioxidant Enzyme Activities in Mouse Fed a Normal Diet vol.14, pp.11, 2013, https://doi.org/10.5762/KAIS.2013.14.11.5646
  3. Conversion of Flavonols Kaempferol and Quercetin in Mulberry (Morus Alba L.) Leaf Using Plant-FermentingLactobacillus Plantarum vol.39, pp.6, 2015, https://doi.org/10.1111/jfbc.12176
  4. Enhancement of 1-deoxynojirimycin content and α-glucosidase inhibitory activity in mulberry leaf using various fermenting microorganisms isolated from Korean traditional fermented food vol.19, pp.6, 2014, https://doi.org/10.1007/s12257-014-0277-0
  5. Development of Mulberry-leaf Tea Containing γ-Aminobutyric Acid (GABA) by Anaerobic Treatments vol.47, pp.5, 2015, https://doi.org/10.9721/KJFST.2015.47.5.652
  6. Effects of Mulberry Leaf Tea Fermented by Monascus pilosus on Body Weight and Hepatic Antioxidant Enzyme Activities in Mouse Fed High-Fat Diet vol.26, pp.1, 2013, https://doi.org/10.9799/ksfan.2013.26.1.066