DOI QR코드

DOI QR Code

Characteristics of Sputtered TiO2 Thin Films for Coating of Polymer Insulator

폴리머 애자 코팅을 위한 스퍼터링 되어진 TiO2 박막의 특성

  • Park, Y.S. (Department of Photoelectronics Information, Chosun College of Science & Technology) ;
  • Jung, H.S. (Korea Railroad Research Institute) ;
  • Park, C.M. (Korea Railroad Research Institute) ;
  • Park, Y. (Korea Railroad Research Institute) ;
  • Kim, H.C. (Korea Railroad Research Institute)
  • Received : 2012.03.15
  • Accepted : 2012.05.24
  • Published : 2012.05.31

Abstract

In this work, we have fabricated the $TiO_2$ thin films on Si and glass, polymer insulator substrates as the self-cleaning coating of polymer insulator. $TiO_2$ films were deposited by RF magnetron sputtering method with $TiO_2$ ceramic target and $TiO_2$ films of 100 nm thickness were fabricated with various RF powers. We have investigated the optical and surface, and structural properties of $TiO_2$ films prepared with various RF powers. As a result, the value of the contact angle of $TiO_2$ thin film is increased with increasing RF power and the value of the rms surface roughness is increased. The transmittance is decreased with increasing RF power. These results indicate that the variation of the surface and optical properties of $TiO_2$ thin films is related to the sputtering effects by increasing RF power.

본 연구에서는 폴리머 애자의 자가세정 코팅을 위한 소재로써 $TiO_2$ 박막을 실리콘과 유리, 폴리머애자 기판위에 증착하였다. $TiO_2$ 박막은 $TiO_2$ 세라믹 타겟이 부착된 RF 마그네트론 스퍼터링 장치를 이용하여 증착하였다. $TiO_2$ 박막은 스퍼터링의 다양한 공정조건 중 RF 파워의 크기에 따라 100 nm의 두께로 증착하였다. RF 파워에 따라 증착되어진 $TiO_2$ 박막의 접촉각, 표면거칠기등 표면 특성을 확인하였으며, UV-visible등 광학적 특성을 고찰하여, 구조적 특성과의 관계를 고찰하였다.

Keywords

References

  1. J. Kim, M. K. Chaudhury, M. J. Owen, and T. Orbeck, J. Colloid and Interface Sci. 244, 200-207 (2001) https://doi.org/10.1006/jcis.2001.7909
  2. M. Addamo, V. Augugliaro, A. Di Paola, e. Garcia-Lopez, V. Loddo, G. Marci, and L. Palmisano, Thin Solid Films 516, 3802 (2008). https://doi.org/10.1016/j.tsf.2007.06.139
  3. C. H. Heo, S. -B. Lee, J. -H. Boo, Thin Solid Films 475, 183 (2005). https://doi.org/10.1016/j.tsf.2004.08.033
  4. F. Meng and F. Lu, Vacuum 85, 84 (2010). https://doi.org/10.1016/j.vacuum.2010.04.006
  5. Y. D. Kim, J. Korean Vacuum Soc. 21, 106 (2012). https://doi.org/10.5757/JKVS.2012.21.2.106
  6. S. -J. Cho, C. -K. Jung, S. -S. Kim, and J. -H. Boo, J. Korean Vacuum Soc. 19, 22 (2010). https://doi.org/10.5757/JKVS.2010.19.1.022
  7. C. H. Li, Y. H. Hsieh, W. T. Chiu, C. C. Liu, and C. L. Kao, Separation and Purification Technology 58, 148 (2007). https://doi.org/10.1016/j.seppur.2007.07.013
  8. H. Sun, C. Wang, S. Pang, X. Li, Y. Tao, H. Tang, and M. Liu, J. Non-Crystalline Solids 354, 1440 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.01.108
  9. G. J. Yang, C. J. Li, and Y. Y. Wang, Mater. Lett. 62, 1670 (2008). https://doi.org/10.1016/j.matlet.2007.09.056
  10. M. M. Abdel-Aziz, I. S. Yahia, L. A. Wahab. M. Fadel, and M. A. Afifi, Appl. Surf. Sci. 252, 8163 (2006). https://doi.org/10.1016/j.apsusc.2005.10.040
  11. M. Dhayal, J. Jun, H. B. Gu, and K. H. Park, J. Solid State Chem. 180, 2696 (2007). https://doi.org/10.1016/j.jssc.2007.06.037
  12. P. Zeman and S. Takabayashi, Surf. Coat. Technol. 153, 93 (2002). https://doi.org/10.1016/S0257-8972(01)01553-5