Regulation of Contraction and $Ca^{2+}$ Transient by Histidine-rich $Ca^{2+}$-binding Protein in Ventricular Myocytes

히스티딘-리치 $Ca^{2+}$ 결합 단백질에 의한 심실근세포 수축 및 $Ca^{2+}$ Transient의 조절

  • Son, Min-Jeong (College of Pharmacy, IDRD, Chungnam National University) ;
  • Kim, Joon-Chul (College of Pharmacy, IDRD, Chungnam National University) ;
  • Kim, Seong-Woo (College of Pharmacy, IDRD, Chungnam National University) ;
  • Ahn, Jong-Real (BK21 Physics Research Division, Sungkyunkwan University) ;
  • Woo, Sun-Hee (College of Pharmacy, IDRD, Chungnam National University)
  • Received : 2012.10.04
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

The histidine-rich $Ca^{2+}$ binding protein (HRC) is a $Ca^{2+}$ binding protein in the sarcoplasmic reticulum (SR). In this study, we examined whether the HRC is involved in the regulation of cardiac contraction and $Ca^{2+}$ signaling using HRC knock-out (KO) mouse ventricular myocytes. In field-stimulated single mouse ventricular myocytes, cell shortenings and $Ca^{2+}$ transients were measured using a video edge detection and a confocal $Ca^{2+}$ imaging, respectively. Compared with the wide-type (WT) myocytes, the magnitudes of cell shortenings were significantly larger in HRC KO cells (P<0.01, WT vs. KO). The rate of contraction and relaxation was significantly accelerated in HRC KO myocytes (P<0.05 and P<0.01, respectively, WT vs. KO). The magnitudes of $Ca^{2+}$ transients were increased by HRC KO (P<0.01, WT vs. KO). In addition, the decay of the $Ca^{2+}$ transient was faster in HRC KO cells than in wild-type cells P<0.01, WT vs. KO). These results suggest that HRC may suppress SR $Ca^{2+}$ releases and decay of $Ca^{2+}$ transients during action potentials, thereby attenuating ventricular contraction and relaxation.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Adachi-Akahane, S., Cleeman, L. and Morad, M. : Crosssignaling between L-type $Ca^{2+}$ channels and ryanodine receptors in rat ventricular myocytes. J. Gen. Physiol. 108, 435 (1996). https://doi.org/10.1085/jgp.108.5.435
  2. Sham, J. S., Hatem, S. N. and Morad, M. : Functional coupling of $Ca^{2+}$channels and ryanodine recptors in cardiac myoyctes. Proc. Natl. Acad. Sci. U.S.A. 92, 121 (1995). https://doi.org/10.1073/pnas.92.1.121
  3. Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. : Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800 (1989). https://doi.org/10.1126/science.2543067
  4. Guo, A. and Yang, H. T. : $Ca^{2+}$ removal mechanisms in mouse embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Cell. Physiol. 297, C732 (2009). https://doi.org/10.1152/ajpcell.00025.2009
  5. Hofmann, S. L., Brown, M. S., Lee, E., Pathak, R. K., Anderson, R. G. and Goldstein, J. L. : Purification of a sarcoplasmic reticulum protein that binds $Ca^{2+}$ and plasma lipoproteins. J. Biol. Chem. 264, 8260 (1989).
  6. Hofmann. S. L., Goldstin, J. L., Orth, K., Moomaw, C. R., Slaughter, C. A. and Brown, M. S. : Molecular cloning of a histidine-rich $Ca^{2+}$-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J. Biol. Chem. 264, 18083 (1989).
  7. Picello, E., Damiani, E. and Margreth, A. : Low-affinity $Ca^{2+}$-binding sites versus $Zn^{2+}$ -binding sites in histidine-rich $Ca^{2+}$-binding protein of skeletal muscle sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 186, 659 (1992). https://doi.org/10.1016/0006-291X(92)90797-O
  8. Lee, H. G., Kang, H., Kim, D. H. and Park, W. J. : Interaction of HRC (histidine-rich $Ca^{2+}$-binding protein) and triadin in the lumen of sarcoplasmic reticulum. J. Biol. Chem. 276, 39533 (2001). https://doi.org/10.1074/jbc.M010664200
  9. Kim, E., Shin, D. W., Hong, C. S., Jeong, D., Kim, D. H. and Park, W. J. : Increased $Ca^{2+}$ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidinerich $Ca^{2+}$-binding protein). Biochem. Biophys. Res. Commun. 300, 192 (2003). https://doi.org/10.1016/S0006-291X(02)02829-2
  10. Sacchetto, R., Damiani, E., Turcato, F., Nori, A. and Margreth, A. : Ca2+-dependent interaction of triadin with histidine-rich $Ca^{2+}$-binding protein carboxyl-terminal region. Biochem. Biophys. Res. Commun. 289, 1125 (2001). https://doi.org/10.1006/bbrc.2001.6126
  11. Gregory, K. N., Ginsburg, K. S., Bodi, I., Hahn, H., Marreez, Y. M., Song, Z., Padmanabhan, P. A., Mitton, B. A., Waggoner, J. R., Monte, D. F. and Park, W. J. : Histidine-rich Ca binding protein: a regulator of sarcoplasmic reticulum calcium sequestration and cardiac function. J. Mol. Cell. Cardiol. 40, 653 (2006). https://doi.org/10.1016/j.yjmcc.2006.02.003
  12. Woo, S. H., Cleemann, L. and Morad, M. : $Ca^{2+}$ current-gated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439 (2002). https://doi.org/10.1113/jphysiol.2002.024190
  13. Lee, S. W., Kim, J. C., Li, Y., Son, M. J. and Woo, S. H. : Fluid pressure modulates L-type $Ca^{2+}$ channel via enhancement of $Ca^{2+}$-induced $Ca^{2+}$ release in rat ventricular myocytes. Am. J. Physiol.-Cell. Physiol. 294, C966 (2008). https://doi.org/10.1152/ajpcell.00381.2007
  14. Arvanitis, D. A., Vafiadaki, E., Fan, G. C., Mitton, B. A., Gregory, K. N., Monte, F. D., Kontrogianni-Konstantopoulos, A. and Sanoudou, D. : Histidine-rich Ca-binding interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart. Circ. Physiol. 293, H1581 (2007). https://doi.org/10.1152/ajpheart.00278.2007