A Comparison of Radical Scavenging Activity and Cyanobacteria Growth Inhibition of Aquatic Vascular Plants

수생관속식물의 라디칼 소거능과 남세균 생장에 대한 억제활성 비교

  • Kwon, Sung-Ho (Department of Biological Science, Ajou University) ;
  • Na, Hye-Ryun (Northeastern Asia Plant Institute) ;
  • Jung, Jong-Duk (Department of Biological Science, Ajou University) ;
  • Baek, Nam-In (Graduate School of Biotechnology & Institute of Life Science & Resources, Kyung Hee University) ;
  • Park, Sang-Kyu (Department of Biological Science, Ajou University) ;
  • Choi, Hong-Keun (Department of Biological Science, Ajou University)
  • 권성호 (아주대학교 생명과학과) ;
  • 나혜련 (동북아식물연구소) ;
  • 정종덕 (아주대학교 생명과학과) ;
  • 백남인 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 박상규 (아주대학교 생명과학과) ;
  • 최홍근 (아주대학교 생명과학과)
  • Received : 2011.07.14
  • Accepted : 2012.03.14
  • Published : 2012.03.31

Abstract

Methanol extracts of aquatic plants were analyzed for allelopathic activities against Escherichia coli JM109 and $Microcystis$ $aeruginosa$ UTEX2385 which were compared to its 2,2-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities. The radical scavenging activities were detected from the extracts of $Persicaria$ $thunbergii$, $Persicaria$ $amphibia$, $Trapa$ $japonica$, $Myriophyllum$ $spicatum$, and $Brasenia$ $schreberi$. Also, the inhibitory activities against cyanobacteria were analyzed according to the order of $B.$ $schreberi$, $T.$ $japonica$, $P.$ $amphibia$, and $M.$ $spicatum$. Most of the extracts from aquatic plants did not show any inhibition against $E.$ $coli$ except $B.$ $schreberi$. We found a positive correlation between the antioxidental activities of methanol extract of aquatic plants and the growth inhibitory activities for cyanobacteria in terms of the DPPH radical scavenging activities ($R^2$=0.381, $P$ <0.0001). The inhibitory activities of methanol extract against $E.$ $coli$ growth was not correlated with the other activities of aquatic plants ($P$ >0.04). We suggest from this study that the allelopathic effects of aquatic plants against cyanobacteria could be screened by using the bioassay based on DPPH.

수생식물이 가지고 있는 타감물질과 타감작용을 알아보기 위하여 메탄올 추출물의 DPPH 라디칼 소거능과 대장균($Escherichia$ $coli$)과 남세균($Microcystis$ $aeruginosa$)에 대한 생장억제 활성을 분석하였다. 그 결과 고마리($Persicaria$ $thunbergii$), 물여뀌($P.$ $amphibia$)와 마름($Trapajaponica$), 이삭물수세미($Myriophyllum$ $spicatum$), 순채($Brasenia$ $schreberi$)가 라디칼 소거 활성을 나타냈으며, 순채, 마름, 물여뀌, 이삭물수세미 등은 남세균에 대한 높은 생장억제 활성을 나타냈다. 반면 순채를 제외한 다른 수생식물의 추출물은 대장균의 생장에 대한 억제 활성이 나타나지 않았다. 수생식물 추출물에 대한 타감작용에 대한 상관 분석 결과, DPPH 라디칼 소거 활성으로 측정된 항 산화 활성과 남세균 생장억제 활성간에는 양의 상관이 있는 것으로 나타났다. 반면에 수생식물 추출물의 대장균에 대한 생장억제는 다른 활성 결과와 상관이 낮은 것으로 나타났다. 본 연구의 결과를 이용하면 수생식물체의 남세균에 대한 타감작용은 DPPH에 의한 항산화성 검정을 이용하는 간편하고 신속한 검사로 대체 될 수 있을 것으로 보인다.

Keywords

References

  1. Alves, T.M. de A., A.F. Silva, M. Brandao, T.S.M. Grandi, E. de F.A. Smânia, A.S. Junior and C.L. Zani. 2000. Biological screening of Brazilian medicinal plants. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro 95(3): 367-373. https://doi.org/10.1590/S0074-02762000000300012
  2. Alzoreky, N.S. and K. Nakahara. 2003. Antibacterial activity of extracts from some edible plants commonly consumed on Asia. International Journal of Food Microbiology 80: 223-230. https://doi.org/10.1016/S0168-1605(02)00169-1
  3. Basile, A., L. Ferrara, M.D. Pezzo, G. Mele, S. Sorbo, P. Bassi and D. Montesano. 2005. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. Journal of Ethnophamacology 102(3): 32-36.
  4. Bushmann, P.J. and M.S. Ailstock. 2006. Antibacterial compounds in estuarine submersed aquatic plants. Journal of Experimental Marine Biology and Ecology 331: 41-50. https://doi.org/10.1016/j.jembe.2005.10.005
  5. Choi, J.-S., J.-H. Lee, H.-J. Park, H.-G. Kim, H.-S. Young and S.I. Mun. 1993. Screening for antioxidant activity of plants and marine algae and its active principles from Prunus davidiana. Korean Journal of Pharmacognosy 24(4): 299-303.
  6. Choi, Y.-H., M.-J. Kim, H.-S. Lee, C. Hu and S.-S. Kwak. 1997a. Antioxidants in leaves of Rosa rugosa. Korean Journal of Pharmacognosy 28(4): 179-184.
  7. Choi, Y.-H., M.-J. Kim, H.-S. Lee, B.-S. Yun, C. Hu and S.-S. Kwak. 1997b. Antioxidative compounds in aerial partsof Potentilla fragarioides. Korean Journal of Pharmacognosy 29(2): 79-85.
  8. Eaton, A.D., L.S. Clesceri, E.W. Rice and A.E. Greenberg. 2005. Standard Methods for the Examination of Water and Wastewater. 21th (ed.). 10.18-10.21.
  9. Elakovich, S.D. and J.W. Wooten. 1987. An examination of the phytotoxicity of the water shield, Basenia schreberi. Journal of Chemical Ecology 13(9): 1935-1940. https://doi.org/10.1007/BF01014676
  10. Gibson, M.T., I.M. Welch, P.R.F. Barrett and I. Ridge. 1990. Barley straw as an inhibitor of algal growth II: Laboratory studies. Journal of Applied Phycology 2(3): 241-248. https://doi.org/10.1007/BF02179781
  11. Greca, M.D., P. Monaco, L. Previtera, G. Aliotta, G. Pinto and A. Pollio. 1989. Allelochemical activity of phenylpropanes from Acorus calamus. Phytochemistry 28(9): 2319-2321. https://doi.org/10.1016/S0031-9422(00)97975-5
  12. Gross, E.M. 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum. Verhandlungern der Internationalen Vereinnigung fur Limnologie 27: 2116-2119.
  13. Gross, E.M., D. Erhard and E. Ivanyi. 2003. Allelopathis activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506-509(1-3): 583-589.
  14. Gross, E.M., S. Hilt, P. Lombardo and G. Mulderij. 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton-state of the art and open question. Hydrobiologia 584: 77-88. https://doi.org/10.1007/s10750-007-0591-z
  15. Hilt, S. 2006. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany 85: 252-256. https://doi.org/10.1016/j.aquabot.2006.05.004
  16. Jung, H.A., Y.J. Jung, N.Y. Yoon, D.M. Jeong, H.J. Bae, D.-W. Kim, D.H. Na and J.S. Choi. 2008. Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation end products formation, and oxidative stress. Food and Chemical Toxicology 46: 3818-3826. https://doi.org/10.1016/j.fct.2008.10.004
  17. Jung, S.J., D.-H. Kim, Y.-H. Hong, J.-H. Lee, H.-N. Song, Y.-D. Rho and N.-I. Baek. 2007. Flavonoids from the flower of Rhododendron yedoense var. Poukhanense and their antioxidant activity. Archives of Pharmacal Research 30(2): 146-150. https://doi.org/10.1007/BF02977686
  18. Körner, S. and A. Nicklisch. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862-871. https://doi.org/10.1046/j.1529-8817.2002.t01-1-02001.x
  19. Kumer, S. and K. Gopal. 1999. Screening of plant species for inhibition of bacterial population of raw water. Journal of Environmental Science and Health A34(4): 975-987.
  20. Li, F.M. and H.Y. Hu. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Applied and Environmental Microbiology 71(11): 6545-6553. https://doi.org/10.1128/AEM.71.11.6545-6553.2005
  21. Lim, B.-J., W.-H. Jheong, M.-S. Byeon and S.-O. Jun. 2000a. Inhibitory effect of Microcystis aeruginosa (Cyanophyceae) growth by in vitro. Korean Journal of Limnology 33(2): 136-144.
  22. Lim, B.-J., W.-H. Jheong and S.O. Jun. 2000b. Enclosure experiments on the effects of various plant on algae. Korean Journal of Limnology 33(3): 304-310.
  23. Lindström, K. 1983 Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia 101: 35-48. https://doi.org/10.1007/BF00008655
  24. Martin, D. and I. Ridge. 1999. The relative sensitivity of algae to decomposing barley straw. Journal of Applied Phycology 11(3): 285-291. https://doi.org/10.1023/A:1008197418074
  25. Mathworks Inc. 2007. MATLAB-The language of technical computing. Release 7.4.0 (R2007a). Mathworks Inc. Natick. MA, USA.
  26. Miller, J. 1972. Experiments in molecular genetics. Cold Spring Habor Laboratory. Cold Spring Harbor. N.Y.
  27. Molish, H. 1937. Der Einfluss einer Pfanze auf die andere Allelopathie. 132pp. Fisher Jena. (English edition published in 2001).
  28. Mulderij, G., W.M. Mooij, A.J.P. Smolders and E. van Donk. 2005. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquatic Botany 82: 284-296. https://doi.org/10.1016/j.aquabot.2005.04.001
  29. Mulderij, G., B. Mau, E. van Donk and E.M. Gross. 2007. Allelopathic activity of Stratiotes aloides on phytoplankton-towards identification of allelopathic substance. Hydrobiologia 584: 89-100. https://doi.org/10.1007/s10750-007-0602-0
  30. Muller, C.H. 1966. The role of chemical interaction (allelopathy) in vegetational composition. Bulletin of Torrey Botanical Club 93(5): 332-351. https://doi.org/10.2307/2483447
  31. Nakai, S., Y. Inoue, M. Hosomi and A. Murakami. 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science 39(8): 47-53. https://doi.org/10.1016/S0273-1223(99)00185-7
  32. Nakai, S., Y. Inoue, M. Hosomi and A. Murakami. 2000. Myriophyllum spicatum-releaased allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research 34(11): 3026-3032. https://doi.org/10.1016/S0043-1354(00)00039-7
  33. Nakai, S., Y. Inoue and M. Hosomi. 2001. Algal growth inhibition effects and inducement modes by plant-producing phenol. Water Research 35(7): 1855-1859. https://doi.org/10.1016/S0043-1354(00)00444-9
  34. Nakai, S., S. Yamada and M. Hosomi. 2005. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543: 71-78. https://doi.org/10.1007/s10750-004-6822-7
  35. Nam, S. and S. Park. 2007. Inibition of submerged Macrophytes on pytoplankton II. Algal growth experiments with water and plant extracts. Korean Journal of Limnology 40(4): 520-526.
  36. Nam, S., S. Joo, S. Kim, N.-I. Baek, H.-K. Choi and S. Park. 2008. Induced metabolite changes in Myriophyllum spicatum during co-existence experiment with the cyanobacterium Microcystis aeruginosa. Journal of Plant Biology 51(5): 373-378. https://doi.org/10.1007/BF03036141
  37. Nascimento, G.G.F., J. Locatelli, P.C. Freitas and G.L. Silva. 2000. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology 31: 247-256.
  38. Navarro, M.C., M.P. Monntilla, M.M. Cabo, M. Galisteo, A. Cáceres, C. Morales and I. Berger. 2003. Antibacterial, antiprotozoal and antioxidant activity of five plants used in izabal for infectious diseases. Phytotherapy Research 17: 325-329. https://doi.org/10.1002/ptr.1134
  39. Newman, J.R. and P.R.F. Barrett. 1993. Control of Microcystis aeruginosa by decomposing barley straw. Journal of Aquatic Plant Management 31: 203-206.
  40. Park, M.-H., B.-H. Kim, M.-S. Han, C.-Y. Ahn, B.-D. Yoon, and H.-M. Oh. 2005. Algicidal effects of Korean oak trees against the Cyanobacterium Microcystis aeruginosa. Korean Journal of Limnology 38(4): 475-481.
  41. Shan, B., Y.-Z. Cai, J.D. Brooks and H. Corke. 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extract. International Journal of Food Microbiology 117: 112-119. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003
  42. Sharififar, F., M.H. Moshafi, S.H. Mansouri, M. Khodashenas and M. Khoshnoodi. 2007. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 18: 800-805. https://doi.org/10.1016/j.foodcont.2006.04.002
  43. Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. Quaternary Review of Biology 78(1): 23-25. https://doi.org/10.1086/367580
  44. Su, L., J.-J. Yin, D. Charles, K. Zhou, J. Moore and L. Yu, 2007. Total phenolic contents, chelating capacities. and radical-scavenging properties of black peppercorn, nutmeg, roseip, cinamon and oregano leaf. Food Chemistry 100: 990-997. https://doi.org/10.1016/j.foodchem.2005.10.058
  45. Trouillas, P., C.-A. Calliste, D.-P. Allais, A. Simon, A. Marfak, C. Delage and J.-L. Duroux. 2003. Antioxidant, antiinflammatory and antiproliferative properties of sixteen water plant extracts used in the limousin countryside as herbal teas. Food Chemistry 80: 399-407. https://doi.org/10.1016/S0308-8146(02)00282-0
  46. Whittaker, R.H. and P.P. Feeny. 1971. Allelochemics: Chemical interactions between species. Science 171(3973): 757-770. https://doi.org/10.1126/science.171.3973.757
  47. Wong, Y.Y.P. and D.D. Kitts. 2006. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry 97: 505-515. https://doi.org/10.1016/j.foodchem.2005.05.031
  48. Wu, Z.B., P. Deng, X.H. Wu, S. Luo and Y.N. Gao. 2007. Allelopathic effects of the surmerged macrophyte Potamogeton malaianus on Scenedesmus obiquus. Hydrobiologia 592: 465-474. https://doi.org/10.1007/s10750-007-0787-2
  49. Yen, G.C. and H.Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry 43: 27-32. https://doi.org/10.1021/jf00049a007
  50. Yeo, E.-J., K.-T. Kim, Y.S. Han, S.-Y. Nah and H.-D. Paik. 2006. Antimicrobial, anti-inflammatory, and anti-oxidative activities of Scilla scilloides (Lindl.) druce root extract. Food Science and Biotechnology 15(4): 639-642.
  51. Zhou, S., S. Nakai, M. Homomi, Y. Sezaki and M. Tominaga. 2006. Allelopathic growth inhibition of cyanobacteria by reed. Allelopathy Journal 18(2): 277-285.