온도와 EC 농도가 파프리카 역병 생장과 유주자낭 형성에 미치는 영향

Effects of Temperature and EC Concentrations on the Growth and the Sporangial Development of $Phytophthora$ sp. in Paprika Cultivation

  • 이정한 (경상대학교 생명과학연구원) ;
  • 정성우 (경상대학교 농업생명과학연구원) ;
  • 조동천 (경상대학교 응용생물학과) ;
  • 배동원 (경상대학교 공동실험실습관) ;
  • 곽연식 (경상대학교 농업생명과학연구원)
  • Lee, Jung-Han (Research Institute of Life Science, Gyeongsang National University) ;
  • Jeong, Sung-Woo (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jo, Dong-Cheon (Department of Applied Biology, Gyeongsang National University) ;
  • Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2011.12.26
  • 심사 : 2012.03.05
  • 발행 : 2012.03.31

초록

본연구는 파프리카의 양액재배시 온도와 급액의 농도가 역병균의 생장과 유주자낭 형성에 미치는 영향을 구명하고자 수행하였다. 순수 분리된 역병균의 균학적 특징에는 격막이 존재하지 않았으며 역병균의 전형적 특징인 유주자낭이 형성되는 것을 관찰하였다. 온도조건에 따른 역병균의 균사생장은 $25^{\circ}C$에서 가장 왕성하였으며, $20^{\circ}C$, $30^{\circ}C$ 그리고 $15^{\circ}C$ 순으로 나타났다. 급액의 농도에 따른 역병균 균사의 생장은 EC 0.5에서 1.5까지 점진적인 증가를 보였으며, EC 1.5에서 가장 빠르게 생장하는 것으로 나타났다. 반면 EC 2.0에서부터 감소하여 EC 3.5 이상에서는 균사가 전혀 생장하지 않는 것으로 확인되었다. EC 농도에 따른 역병균의 유주자낭 형성 정도는 급액의 EC 농도가 높을수록 유의성 있게 감소하였으며 EC 4.0에서는 가장 억제되었다.

In the present study, it was performed that the influences of temperatures and electrical conductivity on the mycelial growth and formation of zoosporangium of the $Phytophthora$ sp. in paprika nutriculture. We investigated mycelial growth of $Phytophthora$ sp. at different temperatures. Morphological characteristics of the isolated pathogen from paprika were typically similar to those of $Phytophthora$ sp. such as no septa and formation of zoosporangia. Optimum growth temperature of the pathogen was $25^{\circ}C$. At $20^{\circ}C$, $30^{\circ}C$ and $15^{\circ}C$, the mycelium growth deceased, respectively. EC level of nutrient solution the mycelial growth was increased EC 0.5 up to $1.5dS{\cdot}m^{-1}$ and reduced 2.0 up to $3.5dS{\cdot}m^{-1}$. The formation of sporangia was negatively correlated with EC, and the formation of sporangia were highly inhibited at EC $4dS{\cdot}m^{-1}$.

키워드

참고문헌

  1. Allen, R.N. and R.D. Harvey. 1974. Negative Chemotaxis of Zoospores of Phytophthora cinnamomi. J. Gen. Microbiol. 84:39-58. https://doi.org/10.1099/00221287-84-1-39
  2. Anderson, E.J. 1951. Effect of Nutrient Salt Concentrations on Infection of Pineapple Roots by Phytophthora cinnamomi. Phytopathology 41:2(Abstr.).
  3. Apple, J.L. 1961. The Development of Black Shank in Tobacco as Influenced by Host Nutrition. Phytopathology 51:386-389.
  4. Bernhardt, E.A. and R.G. Grogan. 1982. Effect of Soil Matric Potential on the Formation and Indirect Germination of Sporangia of Phytophthora parasitica, P. capsici, and P. cryptogea. Phytopathology 72:507-511. https://doi.org/10.1094/Phyto-72-507
  5. Blaker, N.S. and J.D. MacDonald. 1985. Effect of Soil Salinity on the Formation of Sporangia and Zoospores by Three Isolates of Phytophthora. Phytopathology 75:270-274. https://doi.org/10.1094/Phyto-75-270
  6. Blacker, N.S. and J.D. Macdoald. 1986. The Role of Salinity in the Development of Phytophthora Root Rot of Citrus. Phytopathology 76:970-975. https://doi.org/10.1094/Phyto-76-970
  7. Cameron, J.N. and M.J. Carlile. 1980. Negative Chemotaxis of Zoospores of the Fungus Phytophthora palmivora. J General Microbiology 120:347-353.
  8. Cho, J.D., S.K. Kim, S.H. Lee, G.S. Choi, and B.N. Chung. 2007. Viruses and Symptoms on Peppers, and Their Infection in Korea. Res. Plant Dis. 13:75-81. https://doi.org/10.5423/RPD.2007.13.2.075
  9. Coffey, M.D. and M.C. Joseph. 1985. Effects of Phosphorous Acid and Fosetyl-Al on the Life Cycle of Phytophthora cinnamomi and P. citricola. Phytopathology 75:1042-1046. https://doi.org/10.1094/Phyto-75-1042
  10. Duniway, J.M. 1979. Water Relations of Water Molds. Annu. Rev. Phytopathol. 17:431-460. https://doi.org/10.1146/annurev.py.17.090179.002243
  11. Erwin, D.C. and O.K. Ribeiro. 1996. Phytophthora Diseases Worldwide. APS Press St. Paul. MN, UST. 562p.
  12. Granke, L.L. and M.K. Hausbeck. 2010. Effects of Temperature, Concentration, Age, and Algaecides on Phytophthora capsici Zoospore Infectivity. Plant Disease 94:54-60. https://doi.org/10.1094/PDIS-94-1-0054
  13. Jee, H.J., W.D. Cho, and C.H. Kim. 2000. Phytophthora Diseases in Korea. National Institute of Agricultural Science and Technology. 1st ed. Rural Development Administration (RDA), Suwon. Korea.
  14. Katsura, K. 1971. Some Ecological Studies on Zoospore of Phytophthora capsici Leonian, Rev. Plant Protec. Res. 4:58-70.
  15. Katsura, K. and Y. Miyata. 1971. Swimming behavior of Phytophthora capsici zoospores, p.107-128. In: S. Akai and S. Ouchi (eds.). Morphological and biochemical events in plant parasite interaction. Phytopathology. Soc. Jpn. Tokyo.
  16. Kim, G.S., C.H. Park, and J.S. Choi. 1985. Effect of inoculum density, plant age and temperature on incidence of crown rot of pepper caused by P. capsici. Korean J. plant pathol. 24:117-121
  17. Kim, H.J., H.B. Yang, B.N. Chung, and B.C. Kang. 2008. Survey and application of DNA markers linked to TSWV resistance. Kor. J. Hort. Sci. Technol. 26:464-470.
  18. Kim, H.K., J.H. Park, and S.L. Choi. 1989. Influence of various in vitro conditions on growth of Phytophthora capsici, pathogen of pepper crown and root rot. Korean J. plant pathol. 5:230-238.
  19. Kliejunas, J.T. and W.K. Ko. 1974. Effect of motility of Phytophthora palmivora zoospores on disease severity in papaya seedlings and substrate colonization in soil. Phytopathology. 64: 426-428. https://doi.org/10.1094/Phyto-64-426
  20. MacDonald, J.D. and J.M. Duniway. 1978. Influence of the matric and oamotic of water potential on zoospore discharge in Phytophthora. Phytopathology. 68:751-757. https://doi.org/10.1094/Phyto-68-751
  21. Noh, J.J., W. Kim, K.W. Lee, S.Y. So, B.R. Ko, and D.H. Kim. 2007. Effect of furrow mulching with P.E. black film and dripping of phosphorus acid on control of phytopthora root and fruit rot (Phyotopthora capsici) occurred in field-grown watermelon. Kor. J. Hort. Sci. Technol. 25:24-28.
  22. Park. J.H. and H.K. Kim. 1989. Biological control of Phytophthora crown and root rot of greenhouse pepper with Trichoderma harzianum and Enterobacter agglomerans by improved method of application. Korean j. Plant Pathol. 5:1-12.
  23. Tresner, H.D. and J.A. Hayes. 1971. Sodium chloride tolerance of terrestrial fungi. Appl. Microbiol. 22:210-213.
  24. Toppe, B. and K. Thinggaard. 2000. Influence of copper ion concentration and elcetrial conductivity of the nutrient solution on Phytophthora cinnamomi in ivy grown in ebb-and flow systems. J. Phytopathology 148:579-585. https://doi.org/10.1046/j.1439-0434.2000.00552.x