DOI QR코드

DOI QR Code

Highly Sensitive and Selective Gas Sensors Using Catalyst-Loaded SnO2 Nanowires

  • Hwang, In-Sung (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Received : 2012.02.03
  • Accepted : 2012.02.15
  • Published : 2012.05.31

Abstract

Ag- and Pd-loaded $SnO_2$ nanowire network sensors were prepared by the growth of $SnO_2$ nanowires via thermal evaporation, the coating of slurry containing $SnO_2$ nanowires, and dropping of a droplet containing Ag or Pd nanoparticles, and subsequent heat treatment. All the pristine, Pd-loaded and Ag-loaded $SnO_2$ nanowire networks showed the selective detection of $C_2H_5OH$ with low cross-responses to CO, $H_2$, $C_3H_8$, and $NH_3$. However, the relative gas responses and gas selectivity depended closely on the catalyst loading. The loading of Pd enhanced the responses($R_a/R_g$: $R_a$: resistance in air, $R_g$: resistance in gas) to CO and $H_2$ significantly, while it slightly deteriorated the response to $C_2H_5OH$. In contrast, a 3.1-fold enhancement was observed in the response to 100 ppm $C_2H_5OH$ by loading of Ag onto $SnO_2$ nanowire networks. The role of Ag catalysts in the highly sensitive and selective detection of $C_2H_5OH$ is discussed.

Keywords

References

  1. A. Kolmakov and M. Moskovits, "Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures", Annu. Rev. Mater. Res. vol. 34, pp. 151-180, 2004. https://doi.org/10.1146/annurev.matsci.34.040203.112141
  2. I.-S. Hwang and J.-H. Lee, "Gas sensors using oxide nanowire networks: An overview", J. Nanoeng. Nanomanf., vol. 1, pp. 4-17, 2011. https://doi.org/10.1166/jnan.2011.1002
  3. Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, "ZnO NW field-effect transistor and oxygen sensing property", Appl. Phys. Lett., vol. 85, pp. 5923- 5925, 2004. https://doi.org/10.1063/1.1836870
  4. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices", Nature, vol. 409, pp. 66-69, 2001. https://doi.org/10.1038/35051047
  5. I.-S. Hwang, Y.-S. Kim, S.-J. Kim, B-K. Ju, and J.-H. Lee, "A facile fabrication of semiconductor nanowires gas sensor using PDMS patterning and solution deposition", Sens. Actuators B, vol. 136, pp. 224-229, 2009. https://doi.org/10.1016/j.snb.2008.10.042
  6. Y.-J. Choi, I.-S. Hwang, J.-G. Park, K.J. Choi, J.-H. Park, and J.-H. Lee, "Novel fabrication of $SnO_{2}$ nanowire gas sensor with a high sensitivity", Nanotechnology, vol. 19, p. 095507, 2008. https://doi.org/10.1088/0957-4484/19/9/095507
  7. I.-S. Hwang, E.-B. Lee, S-J. Kim, J.-K. Choi, J.-H. Cha, H.-J. Lee, B.-K. Ju, and J.-H. Lee, "Gas sensing properties of $SnO_{2}$ nanowires on micro heater", Sens. Actuators B, vol. 154, pp. 295-300, 2009. https://doi.org/10.1016/j.sna.2009.06.001
  8. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced gas sensing by individual $SnO_{2}$ nanowires and nanobelts functionalized with Pd catalyst particles", Nano Lett., vol. 5, pp. 667-673, 2005. https://doi.org/10.1021/nl050082v
  9. Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen, and W. Yu, "Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performances", Nanotechnology, vol. 21, p. 285501, 2010. https://doi.org/10.1088/0957-4484/21/28/285501
  10. I.-S. Hwang, J.-K Choi, S.-J. Kim, K.-Y. Dong, J.-H. Kwon, B.-K. Ju, and J.-H. Lee, "Enhanced $H_{2}S$ sensing characteristics of $SnO_{2}$ nanowires functionalized with CuO", Sens. Actuators B, vol. 142, pp. 105-110, 2009. https://doi.org/10.1016/j.snb.2009.07.052
  11. C.J. Murphy, T.K. Sau, A.M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, "Anisotropic metal nanoparticles: synthesis, assembly and optical applications", J. Phys. Chem. B, vol. 109, pp. 13857- 13870, 2005.
  12. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, "New methods for supporting palladium on a tin oxide gas sensor", Sens. Actuators B, vol. 9, pp. 71-78, 1992. https://doi.org/10.1016/0925-4005(92)80196-5
  13. M. Yuasa, T. Masaki, T. Kida, K. Shimanoe, and N. Yamazoe, "Nano-sized PdO loaded $SnO_{2}$ nanoparticles by reverse micelle method for highly sensitive CO gas sensor", Sens. Actuators B, vol. 136, pp. 99-104, 2009. https://doi.org/10.1016/j.snb.2008.11.022
  14. J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y.C. Kang, and J.-H. Lee, "Design of selective gas sensors using electrospun Pd-doped $SnO_{2}$ hollow nanofibers", Sens. Actuators B, vol. 150, pp. 191-199, 2010. https://doi.org/10.1016/j.snb.2010.07.013
  15. C. -B. Lim and S. Oh, "Microstructure evolution and gas sensitivities of Pd-doped $SnO_{2}$-based sensor prepared by three different catalyst-addition process", Sens. Actuators B, vol. 30, pp. 223-231, 1996. https://doi.org/10.1016/0925-4005(96)80053-0
  16. L.Liu, T. Zhang, S. Li, L. Wang, and T. Tian, "Preparation, characterization, and gas-sensing properties of Pd-doped $In_{2}O_{3}$ nanofibers", Mater. Lett., vol. 63, pp. 1975-1977, 2009. https://doi.org/10.1016/j.matlet.2009.05.060
  17. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, and S. Chen, "Enhancement of ethanol vapor sensing of $TiO_{2}$ nanobelts by surface engineering", ACS Appl. Mater. Interfaces, vol. 2, pp. 3263-3269, 2010. https://doi.org/10.1021/am100707h
  18. Q. Xiang, G. Meng, Y. Zhanga, J. Xu, P. Xu, Q. Pan, and W. Yu, "Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gassensing properties", Sens. Actuators B, vol. 143, pp. 635-640, 2010. https://doi.org/10.1016/j.snb.2009.10.007
  19. X. Cheng, Y. Xu, S. Gao, H. Zhao, and L. Huo, "Agnanoparticles modified TiO2 sphereical heterostuctures with enhanced gas-sensing performances", Sens. Actuators B, vol. 155, pp. 716 -721, 2011. https://doi.org/10.1016/j.snb.2011.01.036
  20. N. Yamazoe, "New approaches for improving semiconductor gas sensors", Sens. Actuators B, vol. 5, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4

Cited by

  1. Fast Responding Gas Sensors Using Sb-Doped SnO2Nanowire Networks vol.22, pp.4, 2013, https://doi.org/10.5369/JSST.2013.22.4.302
  2. A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres vol.53, pp.2, 2016, https://doi.org/10.4191/kcers.2016.53.2.134
  3. C2H5OH Sensor Using Porous Cr2O3Nano-Hexaprisms vol.21, pp.6, 2012, https://doi.org/10.5369/JSST.2012.21.6.451