DOI QR코드

DOI QR Code

Chemical·Structural characterization of lignin extracted from Pitch Pine with Ionic Liquid (1-ethyl-3-methylimidazolium acetate)Pine with Ionic Liquid (1-ethyl-3-methylimidazolium acetate)

이온성액체(1-ethyl-3-methylimidazolium acetate)로 추출한 리기다소나무(pitch pine) 리그닌의 화학·구조 특성

  • 김재영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김태승 (서울대학교 농업생명과학대학 산림과학부) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 오신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.03.02
  • Accepted : 2012.05.21
  • Published : 2012.05.25

Abstract

1-Ethyl-3-methylimidazolium acetate known as efficient biomass pretreatment reagent was used for the extraction of lignin from rigida pine wood (pitch pine), which was called to ionic liquid lignin (ILL), and chemical structural features of ILL were compared with the corresponding milled wood lignin (MWL). The amounts of phenolic hydroxyl groups (Phe-OH) was determined to 10.0% for ILL and 7.2% for MWL, respectively, where those of methoxyl groups (OMe) were 4.9% for ILL and 11.0% for MWL, respectively. The weight average molecular weight (Mw) of ILL (3,995) were determined to ca. 1/2 of that of MWL (8,438) and polydispersity index (PDI: Mw/Mn) suggested that the lignin fragments were more uniform in the ILL (PDI 1.36) than in the MWL (PDI 2.64). The temperature (Tm) corresponding to maximum decomposition rate (Vm) of ILL ($306.6^{\circ}C$) was ca. $35^{\circ}C$ lower than that of MWL ($341.9^{\circ}C$), suggesting that ILL was thermally unstable than MWL, as evidence from the lower Tm for ILL. Moreover, the structural characteristics of ILL and MWL were confirmed by spectroscopic analyses (FT-IR and $^{13}C$-NMR), and these results indicated ionic liquid (1-ethyl-3-methylimidazolium acetate) was chemically or physically bound to ILL.

바이오매스 전처리에 효과적인 이온성 액체로 주목받고 있는 1-ethyl-3- methylimidazolium acetate를 사용하여 리기다소나무(pitch pine)로부터 리그닌을 추출하였고, 추출한 리그닌(Ionic Liquid Lignin : ILL)의 화학구조적 특성을 동일한 수종에서 단리한 milled wood lignin (MWL)과 비교분석하였다. 작용기 분석 결과 ILL과 MWL은 각각 10.0, 7.2%의 페놀성 수산기와 4.9, 11.0%의 메톡실기를 갖는 것으로 나타났다. ILL의 중량평균 분자량(3,995 Da)은 MWL (8,438 Da)에 비해 약 2배 정도 낮았으며, 다분산지수는 1.36으로 MWL (3.18)보다 낮은 값을 보였다. ILL의 열중량 분석 결과에 의하면 최대중량감소율(Vm)이 나타나는 온도(Tm)는 $306.6^{\circ}C$로 MWL ($341.9^{\circ}C$)보다 낮아 ILL이 MWL에 비해 열적으로 불안정하다는 것을 확인할 수 있었다.

Keywords

References

  1. Baker, S. 1996. Rapid methoxyl analysis of lignins using gas chromatography. Holzforschung 50: 573-574.
  2. Bjorkman, A. 1956. Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Svensk Papperst. 59: 477-485.
  3. Earle, M. and K. Seddon. 2000. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72: 1391-1398. https://doi.org/10.1351/pac200072071391
  4. El Hage, R., N. Brosse, L. Chrusciel, C. Sanchez, P. Sannigrahi, and A. Ragauskas. 2009. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym. Degrade. Stab. 94: 1632-1638. https://doi.org/10.1016/j.polymdegradstab.2009.07.007
  5. Fengel, D. and G. Wegener. 1984. Wood - Chemistry, ultrastructure, reactions. De Gruyter, Berlin.
  6. Filley, T. R., G. D. Codya, B. Goodell, J. Jellisonc, C. Nosera, and A. Ostrofsky. 2002. Lignin demethylation and polysaccharide decomposition in sp- ruce sapwood degraded by brown rot fungi. Organic Geochemistry. 33: 111-124. https://doi.org/10.1016/S0146-6380(01)00144-9
  7. Guerra, A., R. Mendonça, A. Ferraz, F. Lu, and J. Ralph. 2004. Structural characterization of lignin during pinus taeda wood treatment with ceriporiopsis subvermispora. Applied and Environmental Microbiology 70: 4073-4078. https://doi.org/10.1128/AEM.70.7.4073-4078.2004
  8. Hodgson, E., D. Nowakowski, I. Shield, A. Riche, A. V. Bridgwater, J. C Clifton-Brown, and I. S. Donnison. 2011. Variation in miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical biorefining for fuels and chemicals. Bioresour. Technol. 102: 3411-3418. https://doi.org/10.1016/j.biortech.2010.10.017
  9. Huddleston, J. G., H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers. 1998. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction. Chem. Commun. 99: 1765-51766.
  10. Kishimoto, T., U. Yasumitsu, and M. Ubukata. 2006. Chemical synthesis of $\beta$-O-4 type artificial lignin. Org. Biomol. Chem. 4: 1343-1347. https://doi.org/10.1039/b518005h
  11. Kohler, S., T. Libert, M. Schobitz, J. Schaller, F. Meister, W. Gunther, and T. Heinz, 2007. Interactions of Ionic Liquids with Polysacch- arides 1. Unexpected Acetylation of Cellulose with 1- Ethyl-3-methylimidazolium Acetate. Macromol. Rapid Commun. 28: 2311-2317. https://doi.org/10.1002/marc.200700529
  12. Lai, Y. and K. Sarkanen. 1971. Lignins - Occurrence, formation, structure and reactions. Wiley-Inter-Science, New York.
  13. Lee, S. H., T. V. Doherty, R. J. Linhardt, and J. S. Dordick. 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102: 1368-1376. https://doi.org/10.1002/bit.22179
  14. Lu, F. and J. Ralph. 1997. DFRC method for lignin analysis. 1. New method for [beta]-aryl ether cleavage: Lignin model studies. J. Agric. Food Chem. 45: 4655-4660. https://doi.org/10.1021/jf970539p
  15. Maki-Arvela, P., I. Anugwom, P. Virtanen, R. Sjoholm, and J. P. Mikkola. 2010. Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review. Ind. Crop. Prod. 32: 175-201. https://doi.org/10.1016/j.indcrop.2010.04.005
  16. Mansson, P. 1983. Quantitative determination of phenolic and total hydroxyl groups in lignins. Holzforschung 37: 143-146. https://doi.org/10.1515/hfsg.1983.37.3.143
  17. Nimz, H. 1974. Beech lignin - Proposal of a constitutional scheme. Angew. Chem. Int. Edit. 13: 313-321. https://doi.org/10.1002/anie.197403131
  18. Pan, X. and Y. Sano. 2000. Comparison of acetic acid lignin with milled wood and alkaline lignins from wheat straw. Holzforschung 54: 61-65.
  19. Samayam, I. P. and C. A. Schall. 2010. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresour. Technol. 101: 3561-3566. https://doi.org/10.1016/j.biortech.2009.12.066
  20. Sun, N., M. Rahman, Y. Qin, M. L. Maxim, H. Rodríguez, and R. D. Rogers. 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11: 646-655. https://doi.org/10.1039/b822702k
  21. Sun, R., J. Tomkinson, and J. G. Lloyd. 2000. Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym. Degrad. Stabil. 68: 111-119. https://doi.org/10.1016/S0141-3910(99)00174-3
  22. Tan, S. S. Y., D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, and J. L. Scott. 2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzene sulfonate ionic liquid. Green Chem. 11: 339-345. https://doi.org/10.1039/b815310h
  23. Van Rantwijk, F. and R. Sheldon. 2007. Biocatalysis in ionic liquids. Chem. Rev. 107: 2757-2785. https://doi.org/10.1021/cr050946x

Cited by

  1. Study on Pretreatment of Giant Miscanthus Using Ionic Liquid and Structural Change of Lignin vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.344