DOI QR코드

DOI QR Code

Clinical Significance of Extended-Spectrum ${\beta}$-Lactamase Producing $Escherichia$ $coli$ in Pediatric Patients with Febrile Urinary Tract Infection

발열성 소아 요로감염에서 Extended-Spectrum ${\beta}$-Lactamase 생성 $Escherichia$ $coli$의 임상적 의의

  • 박철 (고려대학교 의과대학 소아과학교실) ;
  • 김민상 (고려대학교 의과대학 소아과학교실) ;
  • 김미경 (고려대학교 의과대학 소아과학교실) ;
  • 임형은 (고려대학교 의과대학 소아과학교실) ;
  • 유기환 (고려대학교 의과대학 소아과학교실) ;
  • 홍영숙 (고려대학교 의과대학 소아과학교실) ;
  • 이주원 (고려대학교 의과대학 소아과학교실)
  • Received : 2012.03.08
  • Accepted : 2012.04.05
  • Published : 2012.04.30

Abstract

Purpose: The incidence of community-acquired urinary tract infection (UTI) due to extended-spectrum ${\beta}$-lactamase producing $Escherichia$ $coli$ (ESBL(+) $E.$ $coli$) has increased worldwide. ESBL causes resistance to various types of the newer ${\beta}$-lactam antibiotics, including the expanded spectrum cephalosporins and monobactams. We aimed to investigate the severity of UTI and associated genitourinary malformations in children with febrile UTI caused by ESBL(+) $E.$ $coli$. Methods: We retrospectively reviewed the medical records of 290 patients diagnosed as febrile UTI caused by $E.$ $coli$ between January 2008 and October 2010 at Korea University Medical center. We classified the patients into two groups with ESBL(+) and ESBL(-) $E.$ $coli$ group according to the sensitivity of urine culture. Fever duration, admission period, white blood cell (WBC) counts and C-reactive protein (CRP) in peripheral blood, the presence of hydronephrosis, cortical defects, vesicoureteral reflux (VUR) and renal scar were compared between the two groups. Results: Patients with ESBL(+) $E.$ $coli$ were 32, and those with ESBL(-) $E.$ $coli$ were 258. If we excluded those tested with a sterile urine bag, patients with ESBL(+) $E.$ $coli$ were 22, and those with ESBL(-) $E.$ $coli$ were 212. Whether the results of sterile urine bag tests were included or not, there was no significant difference in all parameters between the two groups statistically. Conclusion: Our data shows that ESBL(+) $E.$ $coli$ may not be related to the severity of UTI and associated genitourinary malformations.

목적: 광범위 베타락탐 분해 효소(extended-spectrum ${\beta}$-lactamase, ESBL) 생성 $E.coli$에 의한 지역 사회 요로감염의 빈도가 전세계적으로 증가하고 있다. ESBL은 광범위 cephalosporin 계 항생제와 monobactam 계 항생제를 포함한 다양한 새로운 ${\beta}$-lactam 계 항생제에 대하여 내성을 일으킨다. 본 연구에서는 발열성 소아 요로감염에서 ESBL(+) $E.coli$의 감염 여부가 요로감염의 중증도, 동반 비뇨기계 기형과 연관이 있는지 알아보고자 하였다. 방법: 2008년 1월부터 2010년 10월까지 고려대학교 병원에서 입원 치료한 소아 중 $E.coli$에 의한 발열성 요로감염 소아 290명을 대상으로 하였다. 요 배양검사에서 항생제 감수성 검사 및 ESBL 생성 여부에 따라서 ESBL(+) $E.coli$ 군과 ESBL(-) $E.coli$ 군으로 나누어 입원 전후 발열 기간, 입원 기간, 말초 혈액 내 백혈구 수와 혈청 C-반응성 단백, 농뇨의 동반 여부, 수신증의 유무, 신 스캔에서 초기 신 결손의 유무, 신 반흔의 유무, 방광 요관 역류의 유무 등의 항목들에 대하여 두 군간에 후향적 비교 분석을 시행하였다. 결과: 대상 소아 총 290명 중 ESBL(+) $E.coli$ 군은 32명, ESBL(-) $E.coli$ 군은 258명이었다. 무균 채뇨백으로 검사를 진행한 소아는 56명이었으며, 이를 제외한 소아는 총 234명으로 ESBL(+) $E.coli$ 군은 22명, ESBL(-) $E.coli$ 군은 212명이었다. 무균 채뇨백으로 검사를 진행한 소아를 포함했을 때와 제외했을 때 모두 두 군간에 통계학적으로 유의한 차이를 보이는 항목은 없었다. 결론: 저자들은 발열성 소아 요로감염에서 ESBL 생성 $E.coli$ 의 감염 여부가 요로감염의 중증도 및 동반 비뇨기계 기형과의 관련이 없음을 제시하는 바이다.

Keywords

References

  1. Hellstrom A, Hanson E, Hansson S, Hjalmas K, Jodal U. Association between urinary symptoms at 7 years old and previous urinary tract infection. Arch Dis Child 1991;66:232-4. https://doi.org/10.1136/adc.66.2.232
  2. Marild S, Jodal U. Incidence rate of first-time symptomatic urinary tract infection in children under 6 years of age. Acta Paediatr 1998;87:549-52. https://doi.org/10.1111/j.1651-2227.1998.tb01502.x
  3. Hoberman A, Charron M, Hickey RW, Baskin M, Kearney DH, Wald ER. Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med 2003;348:195-202. https://doi.org/10.1056/NEJMoa021698
  4. American academy of pediatrics, committee on quality improvement, subcommittee on urinary tract infection. Practice parameter: the diagnosis, treatment, and evaluation of the initial urinary tract infection in febrile infants and young children. Pediatrics 1999;103:843-51.
  5. Jacobson SH, Eklof O, Eriksson CG, Lins LE, Tidgren B, Winberg J. Development of hypertension and uraemia after pyelonephritis in childhood: 27 year follow up. BMJ 1989; 299:703-6. https://doi.org/10.1136/bmj.299.6701.703
  6. Prajapati BS, Prajapati RB, Patel PS. Advances in management of urinary tract infections. Indian J Pediatr 2008;75:809-14. https://doi.org/10.1007/s12098-008-0152-0
  7. Lee SY, Lee JH, Kim JH, Hur JK, Kim SM, Ma SH, et al. Susceptibility tests of oral antibiotics including cefixime against Escherichia coli, isolated from pediatric patients with community acquired urinary tract infections. Korean J Pediatr 2006;49:777-83. https://doi.org/10.3345/kjp.2006.49.7.777
  8. Oteo J, Perez-Vazquez M, Campos J. Extended-spectrum b-lactamase-producing Escherichia coli : changing epidemiology and clinical impact. Curr Opin Infect Dis 2010;23:320-6. https://doi.org/10.1097/QCO.0b013e3283398dc1
  9. Yiee J, Wilcox D. Management of fetal hydronephrosis. Pediatr Nephrol 2008;23:347-53. https://doi.org/10.1007/s00467-007-0542-y
  10. Jaksic E, Bogdanovic R, Artiko V, Saranovic DS, Petrasinovic Z, Petrovic M, et.al. Diagnostic role of initial renal cortical scintigraphy in children with the first episode of acute pyelonephritis. Ann Nucl Med 2011;25:37-43. https://doi.org/10.1007/s12149-010-0431-5
  11. Piepsz A, Gordon I, Hahn K. Paediatric nuclear medicine. Eur J Nucl Med 1991;18:41-66.
  12. Lavocat MP, Granjon D, Guimpied Y, Dutour N, Allard D, Prevot N, et al. The importance of 99mTc-DMSA renal scintigraphy in the follow-up of acute pyelonephritis in children: comparison with urographic data. Nucl Med Commun 1998;19:703-10. https://doi.org/10.1097/00006231-199807000-00013
  13. Ferraro MJ, Craig WA, Dudley MN. Performance standards for antimicrobial susceptibility testing. An NCCLS global informational supplement. 12th. 2002;22:37-46.
  14. Williams G, Craig JC. Prevention of recurrent urinary tract infection in children. Curr Opin Infect Dis 2009;22:72-6. https://doi.org/10.1097/QCO.0b013e328320a885
  15. Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary tract infection in childhood. Pediatr Infect Dis J 2008;27:302-8. https://doi.org/10.1097/INF.0b013e31815e4122
  16. Noemia PG, Angelica M. Febrile urinary tract infection: Escherichia coli susceptibility to oral antimicrobials. Pediatr Nephrol 2002;17:173-6. https://doi.org/10.1007/s00467-001-0808-8
  17. Hirakata Y, Matsuda J, Miyazaki Y, Kamihira S, Kawakami S, Miyazawa Y, et al. Regional variation in the prevalence of extended-spectrum $\beta$-lactamase producing clinical isolates in the Asia-Pacific region (SENTRY 1998-2002). Diagn Microbiol Infect Dis 2005;52:323-9. https://doi.org/10.1016/j.diagmicrobio.2005.04.004
  18. Du Bois SK, Marriot MS, Amyes S.G.B. TEM- and SHV-derived extended-spectrum $\alpha$-lactamase: Relationship between selection, structure and function. J Antimicrob Chemother 1995;35:1697-704.
  19. Knothe H, Shah P, Kremery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983;11:315-7. https://doi.org/10.1007/BF01641355
  20. Jacoby GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxymino-beta-lactams. Infect Dis Clin North Am 1997;11:875-87. https://doi.org/10.1016/S0891-5520(05)70395-0
  21. Paterson DL, Bonomo RA. Extended-spectrum betalactamases: a clinical update. Clin Microbiol Rev 2005;18:657-86 https://doi.org/10.1128/CMR.18.4.657-686.2005
  22. Jarlier N, Nicolas M-H, Fournier G, Philippon A. Extended broad-spectrum $\beta$-lactamase conferring transferable resistance to newer $\beta$-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility pattern. Rev Infect Dis 1988;10:867-78. https://doi.org/10.1093/clinids/10.4.867
  23. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamase and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39:211-33.
  24. Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008;1:144-53.
  25. Brigante G, Luzzaro F, Perilli M, Lombardi G, Coli A, Rossolini GM, et al. Evolution of CTX-M-type beta-lactamases in isolates of Escherichia coli infecting hospital and community patients. Int J Antimicrob Agents 2005;25:157-62. https://doi.org/10.1016/j.ijantimicag.2004.09.013
  26. Pai H. The characteristics of extended-spectrum beta-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J 1998;39:514-9.
  27. Lee JW, Shin JS, Seo JW, Lee MA, Lee SJ. Incidence and risk factors for extended-spectrum betalactamase-producing Escherichia coli in community-acquired childhood urinary tract infection. J Korean Soc Pediatr Nephrol 2004;8:214-22.
  28. Topaloglu R, Er I, Dogan BG, Bilginer Y, Ozaltin F, Besbas N, et al. Risk factors in community-acquired urinary tract infections caused by ESBL-producing bacteria in children. Pediatr Nephrol 2010;25:919-25. https://doi.org/10.1007/s00467-009-1431-3
  29. Kim NH, Lee JA, Kim YK, Choi EH, Ha IS, Lee HJ, Choi Y. Risk factors of urinary tract infections due to extended-spectrum beta-lactamase producing Escherichia coli in children. Korean J Pediatr 2004;47:164-9.
  30. Mo EH, Nam IH, Park KD. Protein C as a differential marker for bacterial infection among pediatric patients with fever. Korean J Pediatr 2004;47:839-43.
  31. Jung JI, Lim DH, Yim HE, Park MS, Yoo KH, Hong YS, et al. Fever duration and renal scar in pediatric urinary tract infection. J Korean Soc Pediatr Nephrol 2008;12:70-7. https://doi.org/10.3339/jkspn.2008.12.1.70
  32. Lohr JA, Portilla MG, Geuder TG, Dunn ML, Dudley SM. Making a presumptive diagnosis of urinary tract infection by using a urinalysis performed in an on-site. Laboratory J Pediatr 1993;122:22-5. https://doi.org/10.1016/S0022-3476(05)83481-X
  33. American academy of pediatrics, steering committee on quality improvement and management, subcommittee on urinary tract infection. Urinary tract infection : Clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 2011;128:595-610. https://doi.org/10.1542/peds.2011-1330
  34. Smith T, Evans K, Lythgoe MF, Anderson PJ, Gordon I . Radiation dosimetry of technetium-99m-DMSA in children. J Nucl Med 1996;37:1336-42.
  35. Paquin AJ. Ureterovesical anastamosis: the description and evaluation of a technique. J Urol 1959;82:573-83.
  36. Chand DH, Rhoades T, Poe SA, et al. Incidence and severity of vesicoureteral reflux in children related to age, gender, race and diagnosis. J Urol 2003;170:1548-50. https://doi.org/10.1097/01.ju.0000084299.55552.6c
  37. Rushton HG. The evaluation of acute pyelonephritis and renal scarring with technetium 99m-dimercaptosuccinic acid renal scintigraphy: evolving concepts and future directions. Pediatr Nephrol 1997;11:108-20. https://doi.org/10.1007/s004670050243
  38. Brun-Buisson C, Legrand P, Phillippon A, Montravers F, Ansquer M, Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet 1987;2:302-6.

Cited by

  1. Extended-Spectrum β-Lactamase 생성 균주와 비생성 균주에 의한 지역사회 획득 요로 감염 비교 vol.22, pp.1, 2012, https://doi.org/10.14776/piv.2015.22.1.29
  2. Antibiotic Sensitivity Patterns in Children with Urinary Tract Infection: Retrospective Study Over 8 Years in a Single Center vol.23, pp.1, 2012, https://doi.org/10.3339/jkspn.2019.23.1.22
  3. Clinical characteristics of children who visited the emergency department with extended-spectrum beta-lactamase-producing Escherichia coli urinary tract infection and its risk factors vol.7, pp.2, 2020, https://doi.org/10.22470/pemj.2020.00045