Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP

최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성

  • Shin, Seok-Hyun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Hwang, Do-Sik (School of Electrical and Electronic Engineering, Yonsei University)
  • 신석현 (연세대학교 전기전자공학과) ;
  • 황도식 (연세대학교 전기전자공학과)
  • Received : 2012.02.14
  • Accepted : 2012.04.19
  • Published : 2012.04.30

Abstract

Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.

목적 : 뇌에 분포하는 동맥혈관을 관찰할 때 흔히 자기공명 뇌혈관 데이터(Magnetic Resonance Angiography, MRA)를 이용한다. 하지만 뇌혈관 데이터의 경우 관찰하고자 하는 부위의 혈관을 직접적으로 관찰하기 어렵다. 이러한 3차원 데이터를 2차원 디스플레이 장치에 나타내기 위해 최대강도투사(Maximum Intensity Projection, MIP) 영상이 흔히 이용된다. 데이터의 투사방향에 위치한 복셀들 중 최대값을 가지는 복셀을 투사하여 최대강도투사 영상을 얻게 된다. 혈관의 경우 큰 복셀값을 가지기 때문에 영상에서 밝게 나타난다. 하지만 투사방향에 중첩되어 있는 일부 혈관들이 투사하는 과정에서 최대값을 가지는 혈관들에 가려져 나타나지 않게 되기 때문에 깊이 정보를 잃게 된다. 또한 정해진 위치에서의 투사영상 밖에 얻을 수 없다는 단점이 있다. 본 논문에서는 기존의 최대강도투사 영상이 가지는 이러한 단점들을 개선하여 뇌혈관의 분포를 3차원 공간상에서 최적화 된 입체영상으로 보는 새로운 방법을 제안하였다. 대상 및 방법 : 우리는 4개의 채널 코일과 3.0T 자기공명영상장치 (Siemens Tim Trio MRI scanner)를 이용하여 피험자의 머리를 고정시키고 3차원 위상대조 (Phase-Contrast, PC) 시퀀스를 적용하여 3차원 뇌혈관 데이터를 얻었다. 얻어진뇌혈관 데이터의 중심점을 기준으로 3차원 공간 회전 알고리즘을 적용하여 회전된 새로운 데이터를 얻은 다음 이 데이터를 기준 수평면상에 투사하여 뇌혈관에 대한 2차원 최대강도투사 영상을 구한다. 이 때 입체영상 구현을 위해 두 눈과 데이터의 중심이 이루는 수렴각에 맞게 뇌혈관 데이터를 각각 공간 회전시킨 후 투사하여 각각의 눈에 적합한 영상들을 구하고 이를 적청안경방식 (anaglyph)을 이용하여 관찰함으로써 최적의 입체감을 가지는 최대강도투사 영상을 얻는다. 결과 : 결과 영상을 살펴보면 우선 기존의 방법들에서는 불가능했던 뇌혈관 데이터의 다양한 위치에서의 최대강도투사 영상이 가능해졌다는 것을 알 수 있다. 또한 관찰자와 데이터 사이의 거리와 두 눈 사이의 거리를 고려하여 보다 사실적인 입체감을 가지는 입체 최대강도투사 영상을 얻었다. 결론적으로 관찰자가 바라보는 방향과 관찰자와 데이터 사이의 거리에 따른 최적의 입체영상을 얻을 수 있었다. 결론 : 제안하는 방법은 단일 최대강도투사 영상을 관찰자의 위치를 고려하여 입체영상으로 변환시킴으로써 최적의 입체감을 가지는 입체 투사 영상을 구하였다. 그리고 구면좌표계 상에서 뇌혈관 데이터의 다양한 투사방향에서의 최대강도투사 영상을 나타낼 수 있었다. 추후 알고리즘 최적화와 병렬연산 프로세스가 적용된다면 진단과 수술 계획에 필요한 뇌혈관의 입체 정보들을 실시간으로 제공해 줄 수 있을 것으로 예상된다.

Keywords

References

  1. Jackowski C, Aghayev E, Sonnenschein M, Dirnhofer R, Thali MJ. Maximum intensity projection of cranial computed tomography data for dental identification. International Journal of Legal Medicine 2006;120:165-167
  2. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 2006;26:905-922
  3. Lee J, Chung TS, Lee KY, Suh SH. Comparison of non-invasive imaging studies in the evaluation of carotid artery stenosis and occlusion: CT angiography, time-of-flight MR angiography and contrast-enhanced MR angiography. J Korean Soc Magn Reson Med 2011;15:234-241
  4. Kim SM, Lee DH, Choi JW, Choi BS, In HS. Diagnosis of vertebral artery ostial stenosis on contrast-enhanced MR angiography: usefulness of a thin-slab MIP technique. J Korean Soc Magn Reson Med 2011;15:77-81
  5. Lee CM, Ryu CW, Kim KW. Assessment of carotid geometry by using the contrast-enhanced MR angiography. J Korean Soc Magn Reson Med 2010;14:47-55
  6. Tsuchiya K, Katase S, Yoshino A, Hachiya J, Yodo K. Preliminary evaluation of volume-rendered three-dimensional display of time-of-flight MR angiography in the diagnosis of intracranial aneurysms. Neuroradiology 2001;43:633-636
  7. Shapiro LB, Tien RD, Golding SJ, Totterman SM. Preliminary results of a modified surface rendering technique in the display of magnetic resonance angiography images. Magn Reson Imaging 1994;12:461-468
  8. Iriberri JD, Va′zquez PP. Depth-enhanced maximum intensity projection. IEEE/EG International Symposium on Volume Graphics 2010;93-100
  9. Guttman MA, McVeigh ER. Techniques for Fast Stereoscopic MRI. Magn Reson Med 2001;46:317-323
  10. Ianir AI, Leonid PY. New methods to produce high quality color anaglyphs for 3-D Visualization. ICIAR 2004;2:273-280
  11. Gatesy SM, Shubin NH, Jenkins FA. Anaglyph stereo imaging of dinosaur track morphology and microtopography. Pale-ontologia Electronica 2005;8:10-22
  12. Smith JR, Connell SD, Swift JA. Stereoscopic display of atomic force microscope images using anaglyph techniques. J Microsc 1999;196:347-51
  13. Ahn CB, Kim CY, Park HJ, Oh SJ. f-MRI with threedimensional visual stimulation. J Korean Soc Magn Reson Med 2005;9:24-29