DOI QR코드

DOI QR Code

High frequency somatic embryogenesis through leaf explant-derived callus culture in Muscari armeniacum cv. 'Early Giant'

무스카리 'Early Giant' 잎 절편 유래 캘러스 배양을 통한 고빈도 체세포배 발생

  • Lee, Hyang-Bun (Department of Horticultural Science, Kyungpook National University) ;
  • Jeon, Su-Min (Department of Horticultural Science, Kyungpook National University) ;
  • Chung, Mi-Young (Department of Agricultural Education, Sunchon National University) ;
  • Han, Jeung-Sul (School of Ecological Environment, Kyungpook National University) ;
  • Kim, Chang-Kil (Department of Horticultural Science, Kyungpook National University) ;
  • Lim, Ki-Byung (Department of Horticultural Science, Kyungpook National University) ;
  • Chung, Jae-Dong (Department of Horticultural Science, Kyungpook National University)
  • Received : 2011.10.05
  • Accepted : 2011.10.15
  • Published : 2012.03.31

Abstract

Using calli of $Muscari$ $armeniacum$ cv. 'Early Giant' that is monocotyledonous ornamental bulb crop with increasing demand in Korea, we carried out current studies to establish an in vitro multiple propagation protocol via somatic embryogenesis. We found that soft pale yellow green calli were induced from leaf explants cultured on all media containing 0.1~3.0 $mg{\cdot}L^{-1}$ auxins such as 1-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). However, induced calli showed vigorous growth only when they further transferred on same media containing 2,4-D, 4-amino-3,5,6-tri-chloropicolinic acid (picloram), or 3,6-dichloro-o-anisic acid (dicamba). Although frequency of somatic embryo induction depended on callus source and PGR composition in somatic embryo induction media, somatic embryogenesis was initiated on surface of proliferated calli after transferring on media with no PGR or 0.01 $mg{\cdot}L^{-1}$ NAA co-supplemented with various cytokinins such as $N^6$-benzylaminopurine (BAP). Highest number of embryo at 9.3 per callus clump was obtained when calli which were grown under 0.1 $mg{\cdot}L^{-1}$ picloram supplementation were sub-cultured on medium with 0.01 $mg{\cdot}L^{-1}$ NAA and 0.5 $mg{\cdot}L^{-1}$ BAP. In addition, morphological characteristics of somatic embryo were categorized into following nine phases: globular, biased heart, biased torpedo, early cotyledonary, middle cotyledonary, late cotyledonary, early sprouting, middle sprouting, and late sprouting embryos.

수요가 증가하고 있는 단자엽 구근 화훼작물인 무스카리($Muscari$ $armeniacum$ Leichtl. Ex Bak.) 'Early Giant' 품종의 캘러스를 재료로 체세포배발생을 통한 기내 대량증식 체계를 확립하기 위하여 본 연구를 수행하였다. 잎 절편을 1-naphthalene acetic acid(NAA), 2,4-dichlorophenoxyacetic acid(2,4-D) 등 오옥신이 0.1~3.0 $mg{\cdot}L^{-1}$ 첨가된 배지에 배양하여 모든 배지에서 부드러운 엷은 연두색 캘러스를 고빈도로 유기하였지만 유기된 캘러스를 동일한 조성의 배지로 이식하였을 때 2,4-D, 4-amino-3,5,6-tri-chloropicolinic acid(picloram) 및 3,6-dichloro-o-anisic acid (dicamba) 첨가배지에서만 증식이 양호하게 이루어졌다. 비록 체세포배발생의 빈도가 캘러스의 기원과 배발생 유도 배지의 식물생장조절제 조성에 따라 차이가 있기는 했지만 식물생장조절제 무첨가 배지를 비롯하여 $N^6$-Benzylaminopurine (BAP) 등 다양한 시토키닌과 NAA 0.01 $mg{\cdot}L^{-1}$가 혼용된 배지에서 체세포배가 유기되었다. 무스카리 잎 절편을 picloram 0.1 $mg{\cdot}L^{-1}$ 배지에 치상하여 캘러스를 유기하고 동일한 배지로 이식하여 증식한 후 NAA 0.01 $mg{\cdot}L^{-1}$와 BAP 0.5 $mg{\cdot}L^{-1}$ 혼용배지로 이식했을 때 최고빈도인 캘러스 덩어리당 9.3개의 체세포배를 획득할 수 있었다. 또한 무스카리 체세포배는 구형, 편심장형, 편어뢰형, 초기 자엽형, 중기 자엽형, 후기 자엽형, 초기 맹아형, 중기 맹아형 및 후기 맹아형배 등 총 9단계로 그 외형이 뚜렷이 구분되었다.

Keywords

References

  1. Bae HC, Ahn HG, Park SK, Yue WM, Jung WY, Chang YD, Choi ST (2000) Effect of scaling time and scale position on bublet formation in scaling of Muscari armeniacum 'Early Giant'. J Kor Soc Hort Sci 41:93-95
  2. Choi ST, Park SK, Jung WY, Ahn HG, Park IH, Chang YD, Kim ST (2000) Effect of leaf cutting time and leaf part on bulblet formation of Muscari armeniacum 'Early Giant'. J Kor Soc Hort Sci 41:87-89
  3. Chung JD, Han JS, Sohn JK (1995) Somatic embryogenesis from filament-derived callus of Paeonia lactiflora Pall. Korean J Plant Tissue Culture 22:47-51
  4. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Experiment Bot 48:1493-1509
  5. Han JS, Kim JH (2009) Direct somatic embryogenesis and plant regeneration from plumules of hot pepper seedlings. Kor J Hort Sci & Technol 27:482-488
  6. Han JS, Yoon MK, Jeong M (2008) Effects of a variety of treatments affecting Chinese cabbage protoplast culture, and plant regeneration from protoplast-derived callus. Korean J Plant Biotechnol 35:235-243 https://doi.org/10.5010/JPB.2008.35.3.235
  7. Hartmann HT, Kester DE, Davies FTJ (1990) Plant propagation, principles and practices. Prentice Hall pp 205-206
  8. Li D, Zhao K, Xie B, Zhang B, Luo K (2003) Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Rep 21:785-788
  9. Lucau-Danila A, Laborde L, Legrand S, Huot L, Hot D, Lemoine Y, Hilbert JL, Hawkins S, Quillet MC, Hendriks T, Blervacq AS (2010) Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.). BMC Plant Biol 10:122 https://doi.org/10.1186/1471-2229-10-122
  10. Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  11. Nakano M, Tanaka S, Kagami S, Saito H (2005) Plantlet regeneration from protoplasts of Muscari armeniacum Leichtl. ex Bak. Plant Biotechnol 22:249-251 https://doi.org/10.5511/plantbiotechnology.22.249
  12. Navalinskienẻ M, Samuitienẻ M (2001) Viruses affecting some bulb and corm flower crops. Biologija 4:40-42
  13. Oh MJ, Min SR, Liu JR, Kim SW (2007) Plant regeneration from floral stem cultures of Nymphoides indica (L.) O. Kuntze. via somatic embryogenesis. J Plant Biotechnol 34:7-10 https://doi.org/10.5010/JPB.2007.34.1.007
  14. Park S, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253-1257 https://doi.org/10.1078/0176-1617-01103
  15. Park SK, Ahn HG, Jung HY, Chang YD, Kim ST, Park IH, Choi ST (2000) Effect of leaf order and position on bulblet formation in leaf cutting of Muscari armeniacum 'Early Giant'. J Kor Soc Hort Sci. 41:90-92
  16. Peck DE, Cumming BG (1986) Beneficial effects of activated charcoal on bulblet production in tissue cultures of Muscari armeniacum. Plant Cell Tiss Org Cult 6:9-14 https://doi.org/10.1007/BF00037753
  17. Ptak A, Bach A (2007) Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures. In Vitro Cell Dev Biol-Plant 43:35-39 https://doi.org/10.1007/s11627-006-9004-7
  18. Suzuki S, Nakano M (2001) Organogenesis and somatic embryogenesis from callus cultures in Muscari armeniacum Leichtl. ex Bak. In Vitro Cell Dev Biol-Plant 37:382-387 https://doi.org/10.1007/s11627-001-0067-1
  19. Suzuki S, Nakano M (2002) Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep 20:835-841 https://doi.org/10.1007/s00299-001-0405-0
  20. Suzuki S, Nakano M (2003) Effect of antibiotics and biaglaphos on the growth and development of embryogenic callus cultures of Muscari armeniacum. Biol Plantarum 47:425-427
  21. Zeynali M, Zanjani BM, Amiri ME, Noruzian M, Aghajari SM (2010) Influence of genotype and plant growth regulator on somatic embryogenesis in rapeseed (Brassica napus L.). African J Biotechnol 9:4050-4055

Cited by

  1. Tissue culture of Muscari species: present achievements and future perspectives vol.27, pp.3, 2016, https://doi.org/10.1007/s12210-016-0505-y