DOI QR코드

DOI QR Code

제노랍두스 곤충병원세균 배양액의 비티 미생물 약제 약효증진 효과

Enhanced Pathogenicity of Bacillus thuringiensis Mixed with a Culture Broth of an Entomopathogenic Bacterium, Xenorhabdus sp.

  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 안햇님 (안동대학교 자연과학대학 생명자원과학과) ;
  • 엄성현 (안동대학교 자연과학대학 생명자원과학과) ;
  • 임은영 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박지영 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Ahn, Haet-Nim (Department of Bioresource Sciences, Andong National University) ;
  • Eom, Seong-Hyeon (Department of Bioresource Sciences, Andong National University) ;
  • Im, Eun-Yeong (Department of Bioresource Sciences, Andong National University) ;
  • Park, Ji-Young (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2011.11.22
  • 심사 : 2012.01.25
  • 발행 : 2012.03.01

초록

곤충병원세균인 제노랍두스($Xenorhabdus$ sp.)는 곤충병원선충인 $Steinernema$ $monticolum$으로부터 분리되었다. 이 세균 배양액을 배추좀나방($Plutella$ $xylostella$) 혈강에 주입할 경우 높은 병원력을 나타내지만, 섭식 처리할 경우 낮은 병원력을 보였다. 본 연구는 이 제노랍두스 세균 배양액이 $Bacillus$ $thuringiensis$(비티)와 혼합하여 배추좀나방 종령충에 처리할 경우 비티의 병원력을 뚜렷하게 증가시키는 것을 보였다. 또한 제노랍두스 배양액과 비티의 혼합비율을 달리할 경우 병원력이 크게 차이를 보였다. 최적의 두 세균 혼합비율을 이용하여 야외에 발생한 배추좀나방에 처리하였으며, 비티 단독처리에 비해 뚜렷이 상승된 방제 효과를 확인할 수 있었다. 이러한 결과는 제노랍두스 배양액을 비티와 혼합하여 새로운 미생물 살충제로 개발할 수 있는 가능성을 제시했다.

The entomopathogenic bacterium, $Xenorhabdus$ sp., was isolated from an entomopathogenic nematode, $Steinernema$ $monticolum$. When these bacteria were injected into the hemocoel of the diamondback moth, $Plutella$ $xylostella$, they caused significant mortality. However, the bacterium was not pathogenic when it was administered orally. This study showed that $Xenorhabdus$ sp. significantly enhanced oral pathogenicity of $Bacillus$ $thuringiensis$ (Bt) against the last instar larvae of $P.$ $xylostella$. Different ratios of culture broth of $Xenorhabdus$ sp. and Bt showed significantly different pathogenicities against $P.$ $xylostella$. In field tests, the optimal bacterial mixture significantly enhanced control efficacy against $P.$ $xylostella$ compared to Bt treatment alone. These results demonstrated that $Xenorhabdus$ sp. culture broth can be developed as a potent biopesticide by enhancing the insecticidal efficacy of Bt.

키워드

참고문헌

  1. Beckage, N.E. 2008. Insect immunology. 348 pp. Academic Press, New York.
  2. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  3. Charleston, D.S., R. Kfir, M. Dicke and L.E.M. Vet. 2006. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biol. Control 33: 131-142.
  4. Dennis, E.A. 1994. Diversity of group types, regulation, and function of phospholipase $A_2$. J. Biol. Chem. 269: 13057-13060.
  5. Dennis, E.A. 1997. The growing phospholipase $A_2$ superfamily of signal transduction enzymes. Trends Biochem. Sci. 22: 1-2. https://doi.org/10.1016/S0968-0004(96)20031-3
  6. Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
  7. Dunphy, G.B. and J.M. Webster. 1984. Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889. https://doi.org/10.1016/0022-1910(84)90063-5
  8. Ferre, J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533. https://doi.org/10.1146/annurev.ento.47.091201.145234
  9. ffrench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
  10. Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999. Resistance to Bacillus thuringiensis CryAc toxin in three strains of Heliothis virescens proteolytic and SIM study of the larval midgut. Arch. Insect Biochem. Physiol. 42: 51-63. https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
  11. Gahan, L.J., F. Gould and D.G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-861. https://doi.org/10.1126/science.1060949
  12. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  13. Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42: 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  14. Haine, E.R., Y. Moret, M.T. Siva-Jothy and J. Rolff. 2008. Antimicrobial defense and persistent infection in insects. Science 322: 1257-1259. https://doi.org/10.1126/science.1165265
  15. Herbert, E.E. and H. Goodrich-Blair. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat. Rev. Microbial. 5: 634-646. https://doi.org/10.1038/nrmicro1706
  16. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  17. Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. ed. by K. Setlow. Plenum, New York.
  18. Jiang, H. and M.R. Kanost. 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30: 95-105. https://doi.org/10.1016/S0965-1748(99)00113-7
  19. Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  20. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  21. Kim, H.H., Y.S. Seo, J.H. Lee and K.Y. Cho. 1990. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) and its cross resistance. Kor. J. Appl. Entomol. 29: 194-200.
  22. Kim H.H., S.R. Cho, D.W. Lee, H.Y. Jeon, C.G. Park and H.Y. Choo. 2006. Biological control of diamondback moth, Plutella xylostella with Korean isolates of entomopathogenic nematodes (Steinernematid and Heterorhabditid) in greenhouse. Kor. J. Appl. Entomol. 45: 201-209
  23. Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89: 258-264. https://doi.org/10.1016/j.jip.2005.05.001
  24. Kwon, S. and Y. Kim. 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42: 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
  25. Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  26. Lavine, M.D. and M.R. Strand. 2002. Insect hemocytes and their role in cellular immune responses. Insect Biochem. Mol. Biol. 32: 1237-1242. https://doi.org/10.1016/S0965-1748(02)00086-3
  27. Oppert, B., K.J. Krammer, R.W. Beeman, D. Johnson and W.H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476. https://doi.org/10.1074/jbc.272.38.23473
  28. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  29. Park, Y., Y. Kim and D. Stanley. 2004. The bacterium Xenorhabdus nematophila inhibits phospholipase $A_2$ from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91: 371-373.
  30. Pigott, C. and D.J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71: 255-281. https://doi.org/10.1128/MMBR.00034-06
  31. Rahman, M.M., H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699. https://doi.org/10.1073/pnas.0306669101
  32. SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  33. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
  34. Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392.
  35. Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
  36. Seo, S. and Y. Kim. 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhbadus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50: 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
  37. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  38. Silva, C.P., N.R. Waterfield, P.J. Daborn, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrench-Constant. 2002. Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell. Microbiol. 6: 329-339.
  39. Song, C.J., S. Seo, S. Shrestha and Y. Kim. 2011. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibits a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J. Microbiol. Biotechnol. 21: 317-322.
  40. Stanley, D. 2000. Eicosanoids in invertebrate signal transduction systems. 277 pp. Princeton University Press, New Jersey.
  41. Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
  42. Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000. Resistance to Bt toxins. Science 287: 42.
  43. Tabashnik, B.E., G.C. Unnithan, L. Masson, D.W. Crowder, X. Li and Y. Carriere. 2009. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 29: 11889-11894
  44. Tanada, Y. and H.K. Kaya. 1993. Insect pathology, Academic Press, San Diego.
  45. Wang, P., J.Z. Zhao, A. Rodrico-Simon, W. Kain, A.F Janmaat, A.M. Shelton, J. Ferre and J.H. Myers. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol. 73: 1199-1207. https://doi.org/10.1128/AEM.01834-06
  46. Zhang, X., M. Candas, N.B. Griko, L. Rose-Young and L.A. Bulla Jr. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor Bt-R1 expressed in insect cells. Cell Death Differ. 12: 1407-1416. https://doi.org/10.1038/sj.cdd.4401675
  47. Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B. 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006