참고문헌
- Beckage, N.E. 2008. Insect immunology. 348 pp. Academic Press, New York.
- Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Charleston, D.S., R. Kfir, M. Dicke and L.E.M. Vet. 2006. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biol. Control 33: 131-142.
-
Dennis, E.A. 1994. Diversity of group types, regulation, and function of phospholipase
$A_2$ . J. Biol. Chem. 269: 13057-13060. -
Dennis, E.A. 1997. The growing phospholipase
$A_2$ superfamily of signal transduction enzymes. Trends Biochem. Sci. 22: 1-2. https://doi.org/10.1016/S0968-0004(96)20031-3 - Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
- Dunphy, G.B. and J.M. Webster. 1984. Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889. https://doi.org/10.1016/0022-1910(84)90063-5
- Ferre, J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533. https://doi.org/10.1146/annurev.ento.47.091201.145234
- ffrench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
- Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999. Resistance to Bacillus thuringiensis CryAc toxin in three strains of Heliothis virescens proteolytic and SIM study of the larval midgut. Arch. Insect Biochem. Physiol. 42: 51-63. https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
- Gahan, L.J., F. Gould and D.G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-861. https://doi.org/10.1126/science.1060949
- Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
- Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42: 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
- Haine, E.R., Y. Moret, M.T. Siva-Jothy and J. Rolff. 2008. Antimicrobial defense and persistent infection in insects. Science 322: 1257-1259. https://doi.org/10.1126/science.1165265
- Herbert, E.E. and H. Goodrich-Blair. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat. Rev. Microbial. 5: 634-646. https://doi.org/10.1038/nrmicro1706
- Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
- Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. ed. by K. Setlow. Plenum, New York.
- Jiang, H. and M.R. Kanost. 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30: 95-105. https://doi.org/10.1016/S0965-1748(99)00113-7
- Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
- Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
- Kim, H.H., Y.S. Seo, J.H. Lee and K.Y. Cho. 1990. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) and its cross resistance. Kor. J. Appl. Entomol. 29: 194-200.
- Kim H.H., S.R. Cho, D.W. Lee, H.Y. Jeon, C.G. Park and H.Y. Choo. 2006. Biological control of diamondback moth, Plutella xylostella with Korean isolates of entomopathogenic nematodes (Steinernematid and Heterorhabditid) in greenhouse. Kor. J. Appl. Entomol. 45: 201-209
- Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89: 258-264. https://doi.org/10.1016/j.jip.2005.05.001
- Kwon, S. and Y. Kim. 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42: 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
- Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
- Lavine, M.D. and M.R. Strand. 2002. Insect hemocytes and their role in cellular immune responses. Insect Biochem. Mol. Biol. 32: 1237-1242. https://doi.org/10.1016/S0965-1748(02)00086-3
- Oppert, B., K.J. Krammer, R.W. Beeman, D. Johnson and W.H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476. https://doi.org/10.1074/jbc.272.38.23473
- Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
-
Park, Y., Y. Kim and D. Stanley. 2004. The bacterium Xenorhabdus nematophila inhibits phospholipase
$A_2$ from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91: 371-373. - Pigott, C. and D.J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71: 255-281. https://doi.org/10.1128/MMBR.00034-06
- Rahman, M.M., H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699. https://doi.org/10.1073/pnas.0306669101
- SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
- Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
- Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392.
- Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
- Seo, S. and Y. Kim. 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhbadus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50: 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
- Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
- Silva, C.P., N.R. Waterfield, P.J. Daborn, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrench-Constant. 2002. Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell. Microbiol. 6: 329-339.
- Song, C.J., S. Seo, S. Shrestha and Y. Kim. 2011. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibits a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J. Microbiol. Biotechnol. 21: 317-322.
- Stanley, D. 2000. Eicosanoids in invertebrate signal transduction systems. 277 pp. Princeton University Press, New Jersey.
- Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
- Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000. Resistance to Bt toxins. Science 287: 42.
- Tabashnik, B.E., G.C. Unnithan, L. Masson, D.W. Crowder, X. Li and Y. Carriere. 2009. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 29: 11889-11894
- Tanada, Y. and H.K. Kaya. 1993. Insect pathology, Academic Press, San Diego.
- Wang, P., J.Z. Zhao, A. Rodrico-Simon, W. Kain, A.F Janmaat, A.M. Shelton, J. Ferre and J.H. Myers. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol. 73: 1199-1207. https://doi.org/10.1128/AEM.01834-06
- Zhang, X., M. Candas, N.B. Griko, L. Rose-Young and L.A. Bulla Jr. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor Bt-R1 expressed in insect cells. Cell Death Differ. 12: 1407-1416. https://doi.org/10.1038/sj.cdd.4401675
- Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B. 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006