DOI QR코드

DOI QR Code

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME

  • Received : 2011.03.11
  • Published : 2012.05.31

Abstract

In this study, we investigate the curvature functions of ruled surface with lightlike ruling for a null curve with Cartan frame in Minkowski 3-space. Also, we give relations between the curvature functions of this ruled surface and curvature functions of central normal surface. Finally, we use the curvature theory of the ruled surface for determine differential properties of a robot end-effector motion.

Keywords

References

  1. L. J. Alias, A. Ferrandez, P. Lucas, and M. A. Moreno, On the Gauss map of Bscrolls, Tsukuba J. Math. 22 (1998), no. 2, 371-377.
  2. N. Ayylldlz and A. Yucesan, On the scalar and dual formulations of the curvature theory of line trajectories in the Lorentzian space, J. Korean Math. Soc. 43 (2006), no. 6, 1339-1355. https://doi.org/10.4134/JKMS.2006.43.6.1339
  3. H. Balgetir, M. Bektas, and M. Ergut, Null scroll in the 3-dimensional Lorentzian space, Appl. Sci. 5 (2003), no. 1, 1-5.
  4. W. B. Bonnor, Null hypersurfaces in Minkowski space-time, Tensor (N. S.) 24 (1972), 329-345.
  5. S. M. Choi, U. H. Ki, and Y. J. Suh, On the Gauss map of null scrolls, Tsukuba J. Math. 22 (1998), no. 1, 273-279. https://doi.org/10.21099/tkbjm/1496163485
  6. A. C. Coken and U. Ciftci, On null curves on surfaces and null vectors in Lorentz space, SDU Fen Derg. 2 (2007), no. 1, 111-116.
  7. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, 1996.
  8. S. Ersoy and M. Tosun, On the trajectory null scrolls in 3-dimensional Minkowski spacetime E3 1 , Kyungpook Math. J. 48 (2008), no. 1, 81-92. https://doi.org/10.5666/KMJ.2008.48.1.081
  9. A. Ferrandez and P. Lucas, On surfaces in the 3-dimensional Lorentz-Minkowski space, Pacific J. Math. 152 (1992), no. 1, 93-100. https://doi.org/10.2140/pjm.1992.152.93
  10. A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Internat. J. Modern Phys. A. 16 (2001), no. 30, 4845-4863. https://doi.org/10.1142/S0217751X01005821
  11. H. Liu, Ruled surfaces with lightlike ruling in 3-Minkowski space, J. Geom. Phys. 59 (2009), no. 1, 74-78. https://doi.org/10.1016/j.geomphys.2008.10.003
  12. J. M. McCarthy, On the scalar and dual formulations of the curvature theory of line trajectories, Journal of Mechanisms, Transmissions, and Automation in Design 109 (1987), 101-106. https://doi.org/10.1115/1.3258772
  13. J. M. McCarthy and B. Roth, The curvature theory of line trajectories in spatial kine- matics, ASME Journal of Mechanical Design 103 (1981), no. 4, 718-724. https://doi.org/10.1115/1.3254978
  14. B. S. Ryuh, Robot trajectory planning using the curvature theory of ruled surfaces, Doctoral dissertation, Purdue University, West Lafayette, Ind, USA, 1989.