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A STUDY ON A RULED SURFACE WITH LIGHTLIKE

RULING FOR A NULL CURVE WITH CARTAN FRAME

Ni̇hat Ayyildiz and Tunahan Turhan

Abstract. In this study, we investigate the curvature functions of ruled
surface with lightlike ruling for a null curve with Cartan frame in Minkow-
ski 3-space. Also, we give relations between the curvature functions of this

ruled surface and curvature functions of central normal surface. Finally,
we use the curvature theory of the ruled surface for determine differential
properties of a robot end-effector motion.

1. Introduction

In recent years a number of papers on ruled surfaces and their invariants in
Minkowski 3-space have appeared ([2], [9], [11]). Several of these have concern
mainly with null scroll and B-scroll ([1], [3], [4], [5], [8], [10]). However, there
is a gap relative to the curvature theory of ruled surface, whose base curve is
null, with lightlike ruling. Here we should note that the ruled surface is neither
null scroll nor B-scroll. So, aim of this paper is to contribute to this theory.

In Section 3, we give the curvature functions characterized the ruled surface
with lightlike ruling for a Cartan framed null curve and also relations between
the curvature functions of this ruled surface and curvature functions of central
normal surface.

Furthermore, as a rigid body moves in space lines embedded in the body
trace ruled surfaces. These lines may be the axes of the joints a spatial mech-
anisms or manipulators or the line of action of the end-of-arm tooling of a
manipulator. The curvature theory of line trajectories seeks to characterize
the shape of body carrying the line that generates it ([13], [12]). So, in Section
4, we shall give end-effector motion in Minkowski 3-space.
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2. Preliminaries

Let E3
1
be Minkowski 3-space with the inner product

⟨u, v⟩ = −u1v1 + u2v2 + u3v3

and the vector product

u× v =

(
−
∣∣∣∣ u2 u3

v2 v3

∣∣∣∣ , ∣∣∣∣ u3 u1

v3 v1

∣∣∣∣ , ∣∣∣∣ u1 u2

v1 v2

∣∣∣∣) ,
where u = (u1 , u2 , u3), v = (v1 , v2 , v3) ∈ E3

1
. For any u, v, w and z ∈ E3

1
, the

Lagrange formula is given by, ([11]),

⟨u× v, w × z⟩ = −⟨u,w⟩⟨v, z⟩+ ⟨u, z⟩⟨v, w⟩.

Definition 1. A vector u in E3
1
is said to be spacelike if ⟨u, u⟩ > 0 or u = 0,

timelike if ⟨u, u⟩ < 0, lightlike or null if ⟨u, u⟩ = 0 and u ̸= 0.

Definition 2. A parametrized curve α = α(s) in Minkowski 3-space E3
1
is said

to be a null curve if its tangent vector field is null, that is,

⟨α
′
(s), α

′
(s)⟩ = 0, α

′
(s) ̸= 0.

Definition 3 ([7]). A base F = {T,N,W} of E3
1
is called a (proper) null frame

if it satisfies the following conditions:

⟨T, T ⟩ = ⟨N,N⟩ = 0, ⟨T,N⟩ = 1,

⟨T,W ⟩ = ⟨N,W ⟩ = 0, ⟨W,W ⟩ = 1,

where W = N × T .

Let α = α(s) be a null curve in E3
1
. Assume that T is a null vector field along

α. So, there exists a null vector field N = N(s) along α satisfying ⟨T,N⟩ = 1.
Here if we put W = N × T , then we can obtain a (proper) null frame field
F = {T,N,W} along α. In such a case, the pair (α,F) is said to be a null
curve with Cartan frame if it satisfies the following, ([7]),

(1)

T ′ =W,

N ′ = kW,

W ′ = −kT −N,

where k = k(s) is smooth function defined by

k = ⟨N ′,W ⟩.

3. A ruled surface with lightlike ruling

Let (α,F) be a null curve with Cartan frame F = {T,N,W}. A ruled
surface M may be represented by the equation

X(ψ, ν) = α (ψ) + νV (ψ) ,

where ψ and v are arbitrary real valued parameters. The curve α (ψ) is called
the directrix ofM and V (ψ) is a vector attached to the straight line generating
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the ruled surface. The Darboux frame at α (ψ) is the basis {T, V, U} of E3
1
,

where T is the tangent vector of the curve α, V is the unique vector obtained
by, ([7]),

V =
1

⟨X,T ⟩

{
X − ⟨X,X⟩

2⟨X,T ⟩
T

}
, X ∈ Tα(ψ)M, ⟨X,T ⟩ ̸= 0,

and U is the spacelike unit normal ofM which is defined by U = V ×T . Hence,
we have

⟨T, T ⟩ = ⟨V, V ⟩ = ⟨V,U⟩ = ⟨T,U⟩ = 0, ⟨T, V ⟩ = 1, ⟨U,U⟩ = 1.

Thus we have the following result:

Theorem 3.1 ([6]). Let α be a null curve inM ⊂ E3
1
. The first order variation

of Darboux frame {T, V, U} is

(2)

 T ′

V ′

U ′

 =

 κg 0 κn
0 −κg τg

−τg −κn 0

 T
V
U

 ,
where ⟨T ′, V ⟩ = κg, ⟨T ′, U⟩ = κn and ⟨V ′, U⟩ = τg.

These functions κg, κn and τg are called the geodesic curvature, the normal
curvature and the geodesic torsion of the curve α, respectively.

So, a relation between a null curve with Cartan frame {T,N,W} and Dar-
boux frame {T, V, U} of a ruled surface M is given by:

Theorem 3.2. Let M be a ruled surface with basis {T, V, U} in E3
1
and α be

a null curve with Cartan frame {T,N,W} in M ⊂ E3
1
. Then

(3)

 T
N
W

 =

 1 0 0

− κ2
g

κn(1+κn)
1 − κg

κn

κg 0 κn


 T
V
U

 .

Proof. If we use equations (1), (2) and the Lagrange formula we get equation
(3). □

Using this result, it is easy to see that

(4) 1 = κn.

Substituting equation (4) into equation (3) it gives (see [6])

(5)

 T
N
W

 =

 1 0 0

−κ2
g

2 1 −κg
κg 0 1


 T
V
U

 .

Now, we shall give a theorem with respect to the striction line which gives the
simplest description of the positional variation of the ruled surface.
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Theorem 3.3. Let M be a ruled surface with basis {T, V, U} in E3
1
and α be

a null curve with Cartan frame {T,N,W} in M ⊂ E3
1
. Then the location of

the striction line relative to the directrix along the ruling V is

β (s) = α (s)−

(
−1

2

∫
κ2g
τ2g
dt+ c

)
V (s) ,

where c is any constant.

Proof. The location of the striction line relative to the directrix along the ruling
V is given by

(6) β (s) = α (s)− µV (s) ,

where µ is a real valued parameter. To determine the parameter µ, if we use
the definition of the striction line, we get

µ = −κg
τ2g
.

So, the first order positional variation of the striction line is expressed as

(7) β′ = ΩT − ΓV +∆U,

where Ω = 1, Γ = µ′ +
κ2
g

τ2
g

and ∆ =
κg

τg
. Here, supposing β null vector and

taking (7) into consideration, we have

µ = −1

2

∫
κ2g
τ2g
dt+ c,

where c is any constant. So, from equation (6) we get

β (s) = α (s)−

(
−1

2

∫
κ2g
τ2g
dt+ c

)
V (s) .

□

In this theorem, the functions Ω, Γ and ∆ characterize the ruled surface M .
These functions are called the curvature functions of the ruled surface M.

As the trihedron T , V , U moves along the striction curve of M the two
Lorentzian vectors T and U generate ruled surfaces associated with M . Of
primary importance is the ruled surface generated by U called the central

normal surface of M . Now let us consider the central normal surface M̃ which
suppose β as a base curve and whose spacelike ruling is U . We can write its
equation

XU (s, ν) = β(s) + νU (s) .

Then, the location of the striction line of this surface is given by the following
result:
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Theorem 3.4. Let M̃ be a central normal surface with spacelike ruling U and
β be its base curve. Then the location of the striction line of the central normal
surface is

β
U
(s) = β(s)−

κ2g − 2κnτg

4τgκn
U (s) .

Proof. From the definition of the striction line we can write

(8) βU (s) = β(s)− µUU (s) ,

where µ
U
is a real parameter. By direct computation the parameter µ

U
is

µ
U
=
κ2g − 2κnτg

4τgκn
.

When this is substituted equation (8), the proof is completed. □

Using this result, the first-order positional variation of the striction line of

the central normal surface M̃ can be expressed with respect to Cartan frame
F = {T,N,W} as follows

β′
u = Ω

U
T + Γ

U
N +∆

U
W,

where

ΩU = κ2g(
µU

2
− 1

4
∆2)− κg(∆− µ′

U
) + µU τg +Ω,

Γ
U
= µ

U
− 1

2
∆2 and ∆

U
= ∆− µ′

U
+ κg

(
µ

U
− 1

2
∆2

)
.

The functions Ω
U
, Γ

U
and ∆

U
characterize the central normal surface M̃ . These

functions are called the curvature functions of the central normal surface M̃.
Now, we would like to exhibit an example for these surfaces:

Example 1. Let the ruled surface M be given by

X(s, t) = (−s, cos s, sin s) + t (1, cos s, sin s) ,

where the null curve α(s) = (−s, cos s, sin s) is the directrix of the surface and
V = (1, cos s, sin s) is the ruling vector of the surface M (see Figure 1). So, we
can construct the Darboux frame of the surface M as follows:

T = (−1,− sin s, cos s) , V = (1, cos s, sin s) and

U = (−1,− sin s− cos s,− sin s+ cos s).

The vectors T , V and U satisfy the following conditions:

⟨T, T ⟩ = ⟨V, V ⟩ = 0, ⟨T, V ⟩ = ⟨U,U⟩ = 1, ⟨V,U⟩ = ⟨T,U⟩ = 0, U = V × T.

Hence, we get the Cartan frame F = {T,N,W} of the null curve α as

T = (−1,− sin s, cos s) , N =

(
1

2
,− sin s

2
,
cos s

2

)
and W = (0,− cos s,− sin s).
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Figure 1. The ruled surface X(s, t) with lightlike ruling V .

Therefore, a Cartan framed null curve (α,F) satisfies the following Frenet
equations

T ′ =W,

N ′ =
1

2
W,

W ′ = −1

2
T −N.

On the other hand, the first order variation of the Darboux frame {T, V, U}
can be expressed as

T ′ = −T + U,

V ′ = V + U,(9)

U ′ = −T − V.

So, the curvature functions of the ruled surface M can be obtained as, respec-
tively,

∆ = −1, Γ = 1 and Ω = 1.

Now, let us assume that the equation of the central normal surface M̃ with
spacelike ruling (see Figure 2) is given by

X
U
(s, t) = (−s, cos s, sin s) + t(−1,− sin s− cos s,− sin s+ cos s).

Therefore, the geodesic curvature κg, the normal curvature κn and the geodesic
torsion τg of the curve α = (−s, cos s, sin s) are found as

κg = −1, κn = 1 and τg = 1.

Finally, the curvature functions of the central normal surface M̃ can be obtained
as follows, respectively,

∆
U
= −1

4
, Γ

U
= −3

4
and Ω

U
= −5

8
.
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Figure 2. The central normal surface X
U
(s, t) with spacelike

ruling U .

4. END-effector motion

A typical robot trajectory is shown in Figure 3. Also, there are three vector
{ 0, A, N}. The tool frame consists of these three vector. Each of the these
three vector of the tool frame generates a ruled surface. It is not necessary to
use all three ruled surfaces to represent a robot trajectory ([14]). One ruled
surface will suffice. The ruled surface generated by the 0 is chosen here to
represent the trajectory. There are four frame of reference which are essential

Figure 3. A robot trajectory.

in the study of the motion of the end-effector. The four frames are: the tool
frame {0, A, N}, the surface frame {0, Sn , Sb

}, Darboux frame {T, V, U} and
Cartan frame {T, N, W} ([14]). The surface frame {0, Sn , Sb

} and the tool
frame {0, A, N} satisfy the following, respectively,

0 = V,

S
b
=

1

⟨Y, V ⟩

{
Y − ⟨Y, Y ⟩

2⟨Y, V ⟩
V

}
, Y ∈ Tα(t)M, ⟨Y, V ⟩ ̸= 0,
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Sn = S
b
× 0,

⟨0, 0⟩ = ⟨S
b
, S

b
⟩ = ⟨0, Sn⟩ = ⟨S

b
, Sn⟩ = 0, ⟨0, S

b
⟩ = ⟨Sn , Sn⟩ = 1

and

⟨0, 0⟩ = ⟨A,A⟩ = ⟨A,N⟩ = ⟨0, N⟩ = 0,

⟨0, A⟩ = ⟨N,N⟩ = 1,

N = A× 0.

Now we can express relation between the tool frame {0, A, N} and the surface
frame {0, Sn , Sb

} in matrix form as

(10)

 0
A
N

 =

 1 0 0
⟨A,S

b
⟩ ⟨A,S

n
⟩ 1

⟨N,S
b
⟩ ⟨N,Sn⟩ 0

 0
Sn

S
b

 .
The relation between the surface frame {0, Sn , Sb

} and Darboux frame {T, V, U}
is expressed in matrix form as

(11)

 0
Sn

S
b

 =

 0 1 0
0 ⟨Sn , T ⟩ −1
1 ⟨S

b
, V ⟩ ⟨S

b
, U⟩

 T
V
U

 .
Lastly, if we use equation (11) into equation (10), we can express relation
between the tool frame {0, A, N} and Darboux frame {T, V, U} as

(12)

 0
A
N

 =

 0 1 0
1 l1 l2
0 l3 l4

 T
V
U

 ,
where

l1 = ⟨S
b
, A+ T ⟩+ ⟨A,Sn⟩⟨Sn , T ⟩,

l2 = ⟨S
b
, U⟩ − ⟨A,Sn⟩,

l3 = ⟨N,S
b
⟩+ ⟨N,Sn⟩⟨Sn , T ⟩,

l4 = −⟨N,Sn⟩.

Now we may express differential properties of the robot end-effector motion in
the Darboux frame and tool frame, respectively,

α′ = T − (Γ− µ′ + κgµ)V + (∆+ µτg)U

and

α′ = Λ10 +A+ Λ2N,

where

Λ1 =
µ′l

4
− l

4
Γ− l

4
l1 + l

3
l
2
− µκgl4 − l

3
∆− µτgl3

l4
and Λ2 =

µτg − l
2
+∆

l4
.
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To determine the first-order variation of the tool frame, we differentiate equa-
tion (12) to get

d

ds

 0
A
N

 =

 0 −κg τg
−l

2
τg l′

1
− l

1
κg − l

2
κn l′

2
+ l

1
τg

−l4τg l′
3
− l3τg − l4κn l′

4
+ l3τg

 T
V
U

 ,
where

l′
1
= ⟨S′

b
, A+ T ⟩+ ⟨S

b
, A

′
+ T ′⟩+ (⟨A′

, Sn⟩+ ⟨A,S′
n
⟩)⟨Sn , T ⟩

+ ⟨A,Sn⟩(⟨S′
n
, T ⟩+ ⟨Sn , T ⟩),

l′
2
= ⟨S′

b
, U⟩+ ⟨S

b
, U⟩ − ⟨A′

, Sn⟩ − ⟨A,S′
n
⟩,

l′
3
= ⟨N ′

, S
b
⟩+ (⟨N ′

, Sn⟩+ ⟨N,S′
n
⟩)⟨Sn , T ⟩+ ⟨N,Sn⟩(⟨S′

n
, T ⟩+ ⟨Sn , T

′⟩),

l′
4
= − ⟨N ′

, Sn⟩ − ⟨N,S′
n
⟩.

An example for the relations defined above may be given as:

Example 2. Let the ruled surface be given by

X(s, t) = (−s, cos s, sin s) + t (1, cos s, sin s) ,

where the null curve α(s) = (−s, cos s, sin s) is the directrix of the surface and
V = (1, cos s, sin s) is the ruling vector of the surface X(s, t) (see Figure 1). So,
we can construct the surface frame {0, Sn , Sb

} as follows:

0 = V = (1, cos s, sin s) , S
b
= (−5, 3 sin s− 4 cos s,−3 cos s− 4 sin s) and

Sn = (−3, sin s− 3 cos s,−3 sin s− cos s).

The vectors 0, S
b
and Sn satisfy the following conditions:

⟨0, 0⟩ = ⟨S
b
, S

b
⟩ = 0, ⟨0, S

b
⟩ = ⟨Sn , Sn⟩ = 1,

⟨0, Sn⟩ = ⟨S
b
, Sn⟩ = 0, Sn = S

b
× 0.

Similarly, we can construct the tool frame { 0, A, N} as follows:

0 = V = (1, cos s, sin s) , A = (−13, 5 sin s− 12 cos s,−5 cos s− 12 sin s) and

N = (−5, sin s− 5 cos s,− cos s− 5 sin s).

The vectors 0, A and N satisfy the following conditions:

⟨0, 0⟩ = ⟨A,A⟩ = 0, ⟨0, A⟩ = ⟨N,N⟩ = 1,

⟨0, N⟩ = ⟨A,N⟩ = 0, N = A× 0.

Hence, from equation (10), we get relation between the tool frame {0, A, N}
and the surface frame {0, Sn , Sb

} in matrix form as 0
A
N

 =

 1 0 0
−2 2 1
−2 1 0

 0
Sn

S
b

 .
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From equation (11), the relation between the surface frame {0, Sn , Sb
} and

Darboux frame {T, V, U} is expressed in matrix form as 0
Sn

S
b

 =

 0 1 0
0 −4 −1
1 1 −4

 T
V
U

 .
Lastly, if we use equation (11) into equation (10), we can express relation
between the tool frame {0, A,N} and Darboux frame {T, V, U} in matrix form
as

(13)

 0
A
N

 =

 0 1 0
1 −9 −6
0 −6 −1

 T
V
U

 .
To determine the first-order variation of the tool frame, we differentiate equa-
tion (13) and use equation (9), we get

d

ds

 0
A
N

 =

 0 1 1
5 −3 −8
1 −5 −6

 T
V
U

 .
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[2] N. Ayyıldız and A. Yücesan, On the scalar and dual formulations of the curvature
theory of line trajectories in the Lorentzian space, J. Korean Math. Soc. 43 (2006), no.
6, 1339–1355.
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[6] A. C. Çöken and Ü. Çiftçi, On null curves on surfaces and null vectors in Lorentz space,
SDU Fen Derg. 2 (2007), no. 1, 111–116.

[7] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds
and Applications, Kluwer Academic Publishers, 1996.

[8] S. Ersoy and M. Tosun, On the trajectory null scrolls in 3-dimensional Minkowski space-
time E3

1
, Kyungpook Math. J. 48 (2008), no. 1, 81–92.

[9] A. Ferrandez and P. Lucas, On surfaces in the 3-dimensional Lorentz-Minkowski space,
Pacific J. Math. 152 (1992), no. 1, 93–100.

[10] A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Inter-

nat. J. Modern Phys. A. 16 (2001), no. 30, 4845–4863.
[11] H. Liu, Ruled surfaces with lightlike ruling in 3-Minkowski space, J. Geom. Phys. 59

(2009), no. 1, 74–78.
[12] J. M. McCarthy, On the scalar and dual formulations of the curvature theory of line

trajectories, Journal of Mechanisms, Transmissions, and Automation in Design 109
(1987), 101–106.

[13] J. M. McCarthy and B. Roth, The curvature theory of line trajectories in spatial kine-
matics, ASME Journal of Mechanical Design 103 (1981), no. 4, 718–724.



A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING 645

[14] B. S. Ryuh, Robot trajectory planning using the curvature theory of ruled surfaces,
Doctoral dissertation, Purdue University, West Lafayette, Ind, USA, 1989.

Ni̇hat Ayyildiz
Department of Mathematics
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