DOI QR코드

DOI QR Code

Assessment of New Algicide Thiazolidinedione (TD49) for the Control of Marine Red Tide Organisms

해양적조생물제어를 위한 살조물질 Thiazolidinedione 유도체(TD49) 평가

  • Baek, Seung-Ho (South Sea Environment Research Department, KORDI) ;
  • Jang, Min-Chul (South Sea Environment Research Department, KORDI) ;
  • Joo, Hae-Mi (South Sea Environment Research Department, KORDI) ;
  • Son, Moon-Ho (South Sea Environment Research Department, KORDI) ;
  • Cho, Hoon (Department of Polymer Science & Engineering, Chosun University) ;
  • Kim, Young-Ok (South Sea Environment Research Department, KORDI)
  • 백승호 (한국해양연구원 남해특성연구부) ;
  • 장민철 (한국해양연구원 남해특성연구부) ;
  • 주혜미 (한국해양연구원 남해특성연구부) ;
  • 손문호 (한국해양연구원 남해특성연구부) ;
  • 조훈 (조선대학교 응용화학소재공학과) ;
  • 김영옥 (한국해양연구원 남해특성연구부)
  • Received : 2011.12.12
  • Accepted : 2011.12.29
  • Published : 2012.02.29

Abstract

Worldwide development of harmful algal blooms causes serious problem for public health and fisheries industries. To evaluate the algicidal impact on the harmful algae bloom species in aquatic ecosystems of coast, a new algicide thiazolidinedione derivative (TD49) were tentatively examined in the growth stages (i.e., lag, logarithmic and stationary phase) of rapidophyceae $Heterosigma$ $akashiwo$, $Chattonella$ $marina$ and $Chattonella$ sp..Three strains could easily destroy in the lag phase due to relatively weak cell walls than those of the logarithmic and stationary phase. It is thought that inoculation of TD49 substances into initial or developmental natural blooms with a threshold concentration ($2{\mu}M$) can maximize the algicidal activity. Also, bio-chemical assays revealed that the algicidal substances from all culture strains were likely to be extracellular substances because those cells have easily destroyed in cell walls. On the other hand, natural zooplankton communities were influenced within the exposure experiments of $2{\mu}M$, which is showed the maximum algcidal activity of tested organisms. These results indicate that although the TD49 substance is potential agents for the control of $H.$ $akashiwo$, $C.$ $marina$ and $Chattonella$ sp. in the enclosed eutrophic bay and coastal water, more detailed research of acute toxicity effect on high trophic organism in marine ecosystems need to be conducted.

전세계적으로 연안해역에서 확산되고 있는 유해유독성 식물플랑크톤의 대발생은 수산자원생물자원에 심각한 피해를 입힌다. 본 연구에서는 유해성 미세조류 대발생을 제어하기 위해 개발된 신물질 Thiazolidinedione 유도체(TD49)의 살조능을 유해성 미세조류 성장단계(초기성장기, 대수증식기, 안정기)에 따라 조사하였다. TD49는 $Heterosigma$ $akashiwo$, $Chattonella$ $marina$ 그리고 $Chattonella$ sp.의 세포를 사멸시켰으며, 특히 낮은 농도($0.02{\mu}M$)의 TD49는 대수증식기와 안정기보다 초기 성장기에서 우수한 살조효과를 보였다. 또한 모든 성장단계에서 유해생물을 제어 할 수 있는 TD49의 농도는 $2{\mu}M$로 측정되었다. 무각 편모조류인 $Heterosigma$ $akashiwo$, $Chattonella$ $marina$ 그리고 $Chattonella$ sp.은 세포벽이 약하여 TD49물질에 의해 세포가 쉽게 파괴되어 우수한 살조효과를 보였다. 결과적으로 본 연구에서 개발된 Thiazolidinedione 유도체(TD49)는 유해적조생물 $H.$ $akashiwo$, $C.$ $marina$ 그리고 $Chattonella$ sp.를 제어할 수 있는 우수한 물질로 판단되었으나, 추후 현장 실용을 위해 메소코즘과 같은 인공생태계를 이용한 해양생태계 위해성 평가가 체계적으로 추진되어야 한다.

Keywords

References

  1. 김학균, 2005. 해양적조 다솜출판사. p 1-449.
  2. 노일현, 오석진, 박종식, 신현호, 윤양호, 2009. 한국 남해산 유해 조류 Chattonella marina와 C. ovata(Raphidophyceae)의 영양염에 대한 성장동력학. 한국수산과학회지, 42: 674-682.
  3. 노일현, 오석진, 신현호, 강인석, 윤양호, 2010. 여수 여안해역에서 침편모조류Chattonella속 출현환경 및 영양염에 대한 성장특성. 한국수산과학회지, 43: 362-372. https://doi.org/10.5657/kfas.2010.43.4.362
  4. 박영태, 박지빈, 정성윤, 송병철, 임월애, 김창훈, 이원재, 1998. 적조생물 살조세균 탐색. 1. 유해 적조생물 Cochlodinium polykrikoides 살조세균 Micrococcus sp. LG-1의 분리와 살조 특성. 한국수산과학회지, 31: 767-773.
  5. 박영태, 이원재, 1998. 황토첨가 해양퇴적물에서 적조생물 Cochlodinium polykrikoides 분해중 세균군집의 변동. 한국수산학회지, 31: 920-926.
  6. 이원재, 박영태, 1998. 적조생물 살조세균 탐색. II. 적조생물 Prorocentrum mican 살조세균 Pseudomonas sp. LG-2의 분리와 살조특성. 한국수산학회지, 31: 852-858.
  7. 임은채, 신준재, 박인택, 한효경, 김시욱, 조훈, 김성준, 2010. 신규 살조물질인 Thiazolidinedione 유도체(TD49)의 해양생태계에 대한 급성독성평가. Kor, Soc. Biotechnol.Bioengin. J., 25: 527-532
  8. 임은채, 신준재, 박인택, 한효경, 김시욱, 조 훈, 김성준, 2011. 신규 살조물질인 Thiazolidinedione 유도체(TD53)의 해양생태계에 대한 급성독성평가. Kor, Soc. Biotechnol.Bioengin. J., 26: 7-12. https://doi.org/10.7841/ksbbj.2011.26.1.007
  9. Fukami, K., T. Nishijima, S. Murata, Doi S. and Y. Hata, 1991. Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakinense red tide and their effects on algal growth. Nippon Suisan Gakkaishi, 57: 2321-2326. https://doi.org/10.2331/suisan.57.2321
  10. Fukami, K., A. Yuzawa, Nishijima, T. and Y. Hata, 1992. Isolation and properities of a bacterium inhibiting the growth of Gymnodinium nagasakinense. Nippon Suisan Gakkaishi, 58: 1073-1077. https://doi.org/10.2331/suisan.58.1073
  11. Honjo, T., 1993. Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. In: Toxic phytoplankton blooms in the sea. Smayda, T.J. and Y. Shimizu, eds. Amsterdam Netherlands Elsevier, 3: 33-42.
  12. Imai, I., Y. Ishida, Sawayama, S. and Y. Hata, 1991. Isolation of a marine gliding bacterium that kills Chattonella antiqua (Raphi-dophyceae). Nippon Suisan Gakkaishi, 57: 1409. https://doi.org/10.2331/suisan.57.1409
  13. Imai, I., M.C. Kim, K. Nagasaki, Itakura, S. and Y. Ishida, 1998. Detection and enumeration of microorganisms that are lethal to harmful phytoplankton in coastal waters. Plankton Biol. Ecol., 45: 15-25.
  14. Imai, I., T. Sunahara, T. Nishikawa, Y. Hori, Kondo, R. and S. Hiroishi, 2001. Fluctuations of the red tide flagellates Chattonella spp.(Raphidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar. Biol., 138: 1043-1049. https://doi.org/10.1007/s002270000513
  15. Kim, H.G., S.G. Lee and K.H. An, 1996. Interannual changes in Heterosigam akashiwo blooms. Bull. Nat. Fish. Res. Dev. Agency, 52: 1-14.
  16. Kim, Y.M., Y. Wu, T.U. Duong, G.S. Ghodake, S.W. Kim, E.S. Jin and H. Cho, 2010. Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl.Biochem. Biotechnol., 162: 2273-2283. https://doi.org/10.1007/s12010-010-9001-5
  17. Mikhail, S.K. 2001. Toxic red tide species are on rise in Alexandria waters (Egypt). Harmful Algae News 22, 5.
  18. Okaichi, T. 1989. Red tide problems in the Seto Inland Sea, Japan. In: Red Tide Biology, Environmental Science, and Toxicology. (eds.), T. Okaichi, Anderson D.M. and T. Nemoto, Elsevier N Y. pp. 137-142.
  19. Smayda, T.J. 1997. Harmful algal blooms:Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr., 42: 1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  20. Watanabe, M.M., Nakamura, Y. and S. Mori, 1982. Effects of physico- chemical factors and nutrients on the growth of Heterosigma akashiwo HADA from Osaka Bay, Japan. Jpa. J. Phycol., 30: 279-288.
  21. Yoshinaga, I., Kawai, T. and Y. Ishida, 1997. Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay. Fisher. Sci., 63: 94-98. https://doi.org/10.2331/fishsci.63.94
  22. Yoshinaga, I., T. Kawai, Takeuchi, T. and Y. Ishida, 1995. Distribution and fluctuation of bacteria inhibiting the growth of a marine red tide phytoplankton Gymnodinium mikimotoi in Tanabe Bay. Fisher. Sci., 61: 780-786. https://doi.org/10.2331/fishsci.61.780
  23. Zhang, Y., F.X Fu, E. Whereat, Coyne, K.J. and D.A. Hutchins, 2006. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae 5: 310-320. https://doi.org/10.1016/j.hal.2005.09.001