DOI QR코드

DOI QR Code

변형된 이론해를 이용한 연직배수재 설치 지반의 압밀해석

Consolidation Analysis for PVD Installed Soft Ground Using a Modified Theoretical Solution

  • 투고 : 2011.08.16
  • 심사 : 2012.01.25
  • 발행 : 2012.01.31

초록

연직배수재를 타설한 지반의 압밀은 배수재 근처 지반의 투수성에 큰 영향을 받으므로 스미어 영역의 투수성이 방사방향 압밀속도를 지배한다. 본 연구에서는 기존의 이론해와 수치해석을 이용하여 스미어 영역의 압밀특성을 기준으로 새로운 방사방향 압밀해석을 수행할 수 있는 방법을 제안하였다. 제안방법에 의한 압밀해석결과는 비교란점토의 압밀특성을 기준으로 압밀해석을 하는 기존방법 보다 불확실성이 큰 $k_h/k_s$에 큰 영향을 받지 않고 신뢰성 있는 결과를 주는 것으로 관찰되었다. PVD를 설치한 부산신항만 연약지반에 대해 압밀해석 결과와 현장 계측데이터를 비교해 본 결과, 제안방법은 부산신항만 압밀속도를 잘 예측하였으며 스미어 영역의 크기는 $3d_w$ 정도로 추정되었다.

As the permeability of soil adjacent to the vertical drain has a decisive effect on the rate of consolidation, the permeability of smear zone governs the rate of radial consolidation of PVD installed soft ground. In this study, a method was suggested to analyze the radial consolidation, based on consolidation characteristics of remolded clay, and was used to evaluate the consolidation of soft clay layer in Busan Newport. The suggested method provides more reliable consolidation behaviors than the conventional approach, which is based on the consolidation characteristics of undisturbed clay. The suggested method is also observed to be relatively insensitive to the uncertainty of $k_h/k_s$. The comparison between the analysis and field measurement revealed that the suggested method provided a reliable prediction on the rate of consolidation of PVD installed Busan new port clay and that an appropriate extent of smear zone was evaluated as about $3d_w$ by back analysis.

키워드

참고문헌

  1. 강민수 (1998), 영향인자를 고려한 연직배수기술의 개발에 관한 연구, 박사학위논문, 중앙대학교.
  2. 김동휘, 김진원, 임형덕, 김대규, 이우진 (2001), "실내시험을 통한 양산점토의 투수특성 평가", 한국지반공학회 논문집, 제17권 제4호, pp.249-257.
  3. 김상규, 김현태, 공길용 (2001), "연직배수재의 소요 통수능 평가", 한국지반공학회 논문집, 제17권 제1호, pp.35-45.
  4. 김상규, 김윤태 (2006), "낙동강 하구 델타 퇴적토의 특성과 기초 설계와의 관련", 낙동강하구 연약지반에서의 중.저층 빌딩의 최적 기초형식에 관한 Workshop 논문집, ATC-7, Seoul, Korea, pp.19-101.
  5. 김윤태 (1996), 배수재가 설치된 연약지반의 압밀해석과 역해석 기법의 적용, 박사학위논문, 한국과학기술원.
  6. 신동현 (2007), Micro-cone과 electrical resistance probe를 이용한 스미어 존의 탐지, 석사학위논문, 고려대학교.
  7. 양정훈, 홍성진, 김형섭, 이우진, 최항석 (2009), "단일 및 이중코어 PBD에 의한 대심도 연약지반 개량 효과에 관한 비교연구", 한국지반공학회 논문집, 제25권 제8호, pp.33-45.
  8. 윤찬영, 정충기 (2005), "연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 압밀거동에 미치는 여향", 한국지반공학회 논문집, 제21권 제6호, pp.5-18.
  9. 윤찬영, 조경진, 정충기 (2008), "다층지반 및 스미어 경계면 해석을 위한 유한차분 압밀해석 기법", 대한토목학회 논문집, 제28권 제5호, pp.283-292.
  10. 윤찬영, 손대진, 천성호, 정충기 (2009), "스미어로 인한 점성토지반의 간극비 및 투수계수의 위치별 차이와 압밀 중 변화 거동에 대한 연구 : Part 1. 시험 및 거동 분석", 대한토목학회 논문집, 제29권 제4호, pp.137-144.
  11. 정성교, 장우영, Ninjgarav, E., 김성렬 (2006), "실내실험에 의한 부산 점토의 투수특성", 한국지반공학회 논문집, 제22권 제11호, pp.133-142.
  12. 최영민 (2010), Electrical resistance probe를 이용한 스미어 존 내물성치 변화의 평가, 석사학위논문, 고려대학교.
  13. 홍성진, 이문주, 김태준, 이우진 (2009), "간극수압비를 이용한 부산점토의 CPTu 콘 계수 추정", 한국지반공학회 논문집, 제25권 제1호, pp.77-88.
  14. 홍성진, 김동휘, 최영민, 이우진 (2011), "부산과 인천점토의 퇴적 상태를 고려한 압축지수 추정", 한국지반공학회 논문집, 심사중.
  15. Asaoka, A. (1978), "Observational procedure of settlement prediction", Soils and Foundation, Vol.18, No.4, pp.87-101. https://doi.org/10.3208/sandf1972.18.4_87
  16. Basu, D., Basu, P. and Prezzi, M. (2006), "Analytical solutions for consolidation aided by vertical drains", J. Geomechanics and geoengineering, Vol.1, No.1, pp.63-71. https://doi.org/10.1080/17486020500527960
  17. Basu, D. and Prezzi, M. (2007), "Effect of the smear and transition zones around prefabricated vertical drains installed in a triangular pattern on the rate of soil consolidation", J. Geomechanics, ASCE, Vol.7, No.1, pp.34-43. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(34)
  18. Barron, R. A. (1944), "The influence of drain wells on the consolidation of fine-grained soils", Diss. Providence, U. S. Engineering office.
  19. Barron, R. A. (1948), "Consolidation of fine-grained soils by drain wells", Trans. ASCE, Vol.113, pp.718-742.
  20. Bergado, D. T., Asakami, H., Alfaro, M. C. and Balasubramaniam, A. S. (1991), "Smear effects of vertical drains on soft Bangkok clay", J. Geotechnical Engineering, ASCE, Vol.117, No.10, pp.1509-1530. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:10(1509)
  21. Bergado, D. T., Enriquez, A. S., Sampaco, C. L., Alfaro, M. C. and Balasubramaniam, A. S. (1992), "Inverse analysis of geotechnical parameters on improved soft Bangkok clay", J. Geotechnical Engineering, ASCE, Vol.118, No.7, pp.1012-1030. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:7(1012)
  22. Bergado, D. T., Alfaro, M. C. and Balasubramaniam, A. S. (1993), "Improvement of soft Bangkok clay using vertical drains", Geotextiles and Geomembranes, Vol.12, pp.615-663. https://doi.org/10.1016/0266-1144(93)90032-J
  23. Bergado D. T., Balasubramaniam, A. S., Fannin, R. J. and Holtz, R. D. (2002), "Prefabricated vertical drains (PVDs) in soft Bangkok clay: a case study of the new Bangkok international airport project", Canadian Geotechnical Journal, Vol.39, pp.304-315. https://doi.org/10.1139/t01-100
  24. Burland, J. G. (1990), "On compressibility and shear strength of natural clay", Geotechnique, Vol.40, No.3, pp.329-378. https://doi.org/10.1680/geot.1990.40.3.329
  25. Carillo, N. (1942), "Simple two and three dimensional cases in the theory of consolidation of soils", J. Mathematics and Physics, Vol.21, No.1, pp.11-18.
  26. Chai, J. C. and Miura, N. (1999), "Investigation of factors affecting vertical drain behavior", J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.3, pp.216-226. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(216)
  27. Chai, J. C., Shen, S. L., Miura, N. and Bergado, D. T. (2001), "Simple method of modeling PVD-improved subsoil", J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.11, pp.965-972. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(965)
  28. Chung, S. G., Ryu, C. K., Jo, K. Y. and Huh, D. Y. (2005), "Geological and geotechnical characteristics of marine clays at the Busan new port", Marine Georesources and Geotechnology, Vol.23, No.3, pp.235-251. https://doi.org/10.1080/10641190500225712
  29. Hansbo, S. (1981), "Consolidation of fine-grained soils by prefabricated drains", Proc.10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Vol.3, pp.677-682.
  30. Hansbo, S. (1987), "Design aspects of vertical drains and lime column installation", Proc., 9th Southeast Asian Geotech. Conference, Bangkok, Thailand, 8-1 to 8-12.
  31. Hansbo, S. (1997), "Aspects of vertical drain design: Darcian or non-darcian flow", Geotechnique, Vol.47, No.5, pp.983-992. https://doi.org/10.1680/geot.1997.47.5.983
  32. Hawlader, B. C., Imai, G. and Muhunthan, B. (2002), "Numerical study of the factors affecting the consolidation of clay with vertical drains", Geotextiles and Geomembranes, Vol.20, pp.213-239. https://doi.org/10.1016/S0266-1144(02)00012-2
  33. Hird, C. C. and Moseley, V. J. (2000), "Model study of seepage in smear zones around vertical drains in layered soil", Geotechnique, Vol.50, No.1, pp.89-97. https://doi.org/10.1680/geot.2000.50.1.89
  34. Holtz, R. D. and Broms, B. (1972), "Long term loading test at Ska-Edeby, Sweden", Proc. Specialty Conference on Performance of Earth and Earth-Supported Structures, Purdue University, Vol.1, pp.435-464.
  35. Holtz, R. D. and Holm, G. (1973), "Excavation and sampling around some sand drains at Ska-Edeby, Sweden", Proc. Nordic Geot. Meeting, Norwegian Geotechnical Institute.
  36. Holtz, R. D., Jamiolkowski, M. B., Lancellotta, R. and Pedroni, S. (1987), Performance of prefabricated band-shaped drains, Construction Industry Research and Information Association (CIRIA) Report, Research project 364.
  37. Holtz, R. D., Jamiolkowski, M. B., Lancellotta, R. and Pedroni, R. (1991), Prefabricated vertical drains: Design and Performance, Construction Industry Research and Information Association Report.
  38. Indraratna, B., Balasubramaniam, A. S. and Ratnayake, A. M. P. (1994), "Performance of embankment stabilized with vertical drains on soft clay", J. Geotechnical Engineering, ASCE, Vol.120, No.2, pp.257-273. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(257)
  39. Indraratna, B. and Redana. I. W. (1998), "Laboratory determination of smear zone due to vertical drain installation", J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.2, pp.180-184. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(180)
  40. Indraratna, B. and Redana. I. W. (2000), "Numerical modeling of vertical drains with smear and well resistance installed in soft clay", Canadian Geotechnical Journal, Vol.37, pp.132-145. https://doi.org/10.1139/t99-115
  41. Indraratna, B., Rujikiatkamjorn, C. and Sathananthan, I. (2005), "Radial consolidation of clay using compressibility indices and varying horizontal permeability", Canadian Geotechnical Journal, Vol.42, pp.1330-1342. https://doi.org/10.1139/t05-052
  42. Kim, R. Hong, S. J, Lee, M. J. and Lee, W. (2011), "Time dependent well resistance factor of PVD", Marine Georesources & Geotechnology, Vol.29, No.2, pp.131-144. https://doi.org/10.1080/1064119X.2010.525145
  43. Leroueil, S. (1988), "Tenth Canadian geotechnical colloquium: Recent developments in consolidation of natural clays", Canadian Geotechnical Journal, Vol.25, pp.85-107. https://doi.org/10.1139/t88-010
  44. Lo, D. O. K. (1991), Soil improvement by vertical drains, Doctor thesis, University of Illinois.
  45. Locat, J. and Tanaka, H. (1999), "Microstructure, mineralogy and physical properties ; Techniques and application to the Busan clays", Proc. KSG'99 Dredging and Geoenvironmental conference, Seoul, pp.15-31.
  46. Madhav, M. R., Park, Y. M. and Miura, N. (1993), "Modelling and study of smear zones around band shaped drains, Soils and Foundation, Vol.33, No.4, pp.135-147. https://doi.org/10.3208/sandf1972.33.4_135
  47. Mesri, G. and Choi, Y. K. (1985), "Settlement analysis of embankments on soft clays", J. Geotechnical Engineering, ASCE, Vol.111, No.4, pp.441-464. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441)
  48. Nagaraj, T. S. and Srinivasa Murthy, B. R. (1983), "Rationalization of skempton's compressibility equation", Geotechnique, Vol.33, pp.433-443. https://doi.org/10.1680/geot.1983.33.4.433
  49. Onoue A. (1988), "Consolidation by vertical drains taking well resistance and smear into consideration", Soils and Foundation, Vol.28, No.4, pp.165-174. https://doi.org/10.3208/sandf1972.28.4_165
  50. Onoue A., Ting, N. H., Germaine, J. T. and Whitman, R. V. (1991), "Permeability of disturbed zone around vertical drains", Proc. 1991 ASCE Geotechnical Engineering Congress, Boulder, Colorado, Vol.2, pp.879-890.
  51. Rendulic, L. (1935), "Der hydrodynamische spannungsusgleich in zentral entwasserten tonzylindern", Wasserwirtsch. U. Tech., Vol.2, pp.250-253.
  52. Rixner, J. J., Kraemer, S. R. and Smith, A. D. (1986), Prefabricated vertical drains, Vol.1, Engineering Guidelines, Federal Highway Administration (FWHA) Report.
  53. Rujikiatkamjorn, C. and Indraratna, B. (2009), "Design procedure for vertical drains considering a linear variation of lateral permeability within the smear zone", Canadian Geotechnical Journal, Vol.46, pp.270-280. https://doi.org/10.1139/T08-124
  54. Sathananthan, I. and Indraratna, B. (2006), "Laboratory evaluation of smear zone and correlation between permeability and moisture content", J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.132, No.7, pp.942-945. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(942)
  55. Schmertmann, J. H., (1955), "The undisturbed consolidation behavior of clay", Trans. ASCE, Vol.120, pp.1201-1233.
  56. Sharma, J. S. and Xiao, D. (2000), "Characterization of a smear zone around vertical drains by large-scale laboratory tests", Canadian Geotechnical Journal, Vol.37, pp.1265-1271. https://doi.org/10.1139/t00-050
  57. Shogaki, T. and Kaneko, M. (1994), "Effect of sample disturbance on strength and consolidation parameters of soft clay", Soils and Foundations, Vol.34, No.3, pp.1-10.
  58. Tavenas, F., Jean, P., Leblond, P. and Leroueil, S. (1983), "The permeability of natural soft clays. Part II: Permeability characteristics", Canadian Geotechnical Journal, Vol.20, pp.645-660. https://doi.org/10.1139/t83-073
  59. Terzaghi, K., Peck R. B. and Mesri, G. (1996), Soil mechanics in engineering practice, John Wiley and Sons, New York.
  60. Yoshikuni, H. and Nakanodo, H. (1974), "Consolidation of soils by vertical drain wells with finite permeability", Soils and Foundations, Vol.14, No.2, pp.35-46. https://doi.org/10.3208/sandf1972.14.2_35
  61. Zeng, G. X. and Xie, K. H. (1989), "New development of the vertical drain theories", Proc.12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, Vol.2, pp.1435-1438.

피인용 문헌

  1. Evaluation of the mechanical properties and critical slope parameters of mine tailings at Enyigba, South eastern, Nigeria vol.9, pp.1, 2012, https://doi.org/10.1186/s40703-018-0075-1