DOI QR코드

DOI QR Code

유한차분해석과 개별요소해석을 이용한 암반에 근입된 현장타설말뚝의 선단지지력 연구

A Study on the Ultimate Point Resistance of Rock Socketed Drilled Shafts Using FLAC3D and UDEC

  • 이재환 (연세대학교 토목공학과) ;
  • 조후연 (동명기술공단 지반지하공간부) ;
  • 유광호 (수원대학교 토목공학과) ;
  • 정상섬 (연세대학교 토목공학과)
  • 투고 : 2011.06.10
  • 심사 : 2011.12.16
  • 발행 : 2012.01.31

초록

본 연구에서는 암반근입 현장타설말뚝의 선단지지력에 영향을 미치는 주요 영향인자들과 이들 영향인자에 따른 선단지지력의 변화특성을 수치해석을 통하여 분석하였다. 수치해석은 일반적으로 널리 사용되는 연속체해석 중 유한차분해석(FDM)과 암반에 존재하는 불연속면(절리, 단층 등)의 특성을 고려할 수 있는 불연속체해석 중 개별요소해석(DEM)을 병행함으로서 해석의 정확도를 높였다. 그 결과, 암반에 근입된 현장타설말뚝의 선단지지력($q_{max}$)은 암반의 탄성계수($E_m$), 불연속면의 간격($S_j$)에 비례하여 증가하였으며, 말뚝의 직경(D)에는 반비례하는 것을 확인할 수 있었다. 또한 불연속면의 경사($i_j$)에 대해서는 불연속면의 경사($i_j$)가 $0^{\circ}$ < $i_j$ < $60^{\circ}$일 때의 선단지지력은 그 외 경사의 선단지지력에 비해 최대 약 50%까지 감소하였으며 이는 말뚝으로부터 전해진 하중에 의하여 말뚝하부 암반 자체 보다 암반의 불연속면에서 먼저 전단파괴가 발생하였기 때문인 것으로 판단된다. 불연속면의 경사($i_j$)가 불연속면의 내부마찰각(${\phi}_j$)과 근접할 때 선단지지력이 최소치에 가까운 것으로 나타났으며, 따라서 불연속면의 경사가 일반적인 암반 및 암반 불연속면 내부마찰각의 범위인 $20^{\circ}{\sim}40^{\circ}$에 존재할 때는 선단지지력의 산정 시 반드시 불연속면 경사의 영향을 고려해야하는 것으로 나타났다.

The maximum unit point resistance ($q_{max}$) of rock socketed drilled shafts subjected to axial loads was investigated by a numerical analysis. A 3D Finite Difference Method (FDM) analysis and a Distinct Element Method (DEM) analysis were performed with varying rock elastic modulus (E), discontinuity spacing ($S_j$), discontinuity dip angle ($i_j$), and pile diameter (D). Based on the results of obtained, it was found that the ultimate point resistance ($q_{max}$) increased as rock elastic modulus (E) and rock discontinuity spacing ($S_j$) increased. But, it was found that $q_{max}$ decreased as pile diameter (D) increased. As for the influence of the dip angle of rock discontinuity ($i_j$), it was shown that $q_{max}$ decreased up to 50% of maximum value within the range of $0^{\circ}$ < $i_j$ < $60^{\circ}$ due to the shear failure at rock discontinuities. Furthermore, it was found that if $20^{\circ}{\leq}i_j{\leq}40^{\circ}$, influence of $i_j$ should be taken into account because $q_{max}$ tended to approach a minimum value as $i_j$ approached a value near the friction angle of the discontinuity (${\phi}_j$).

키워드

참고문헌

  1. 권오성, 김명모 (2008), "풍화된 암반에 근입된 현장타설말뚝의 선단지지거동", 대한토목학회논문집, 제28권 4C호, pp.197-203.
  2. 김원철, 황영철, 황성식 (2002), "암반에 근입된 현장타설말뚝의 정재하시험결과와 지지력이론식의 비교", 한국지반환경공학회논문집, 제3권 4호, pp.51-58.
  3. 조천환, 이명환, 김성회 (2003), "국내 현장타설말뚝의 주면 접촉부에 대한 일정강성도 전단시험", 한국지반공학회 정기학술대회, pp.147-152.
  4. Alehossein, H., Carter, J. P., and Booker, J. R. (1992), "Finite element analysis of rigid footings on jointed rock", Proc., 3rd Int. Conf. on Comp. Plasticity, Vol.1, pp.935-945.
  5. ARGEMA (1992), Design guides for offshore structures : Offshore pile design, ED: P. L. Tirant, Editions Technip, Paris, France.
  6. Baquelin, F., Frand, R., and Jezequel, J. F. (1982), "Parameters for friction piles in marine soils", 2nd International Conference in Numerical Methods for Offshore Piling, Austin, April.
  7. Booker, J. R. (1991), "Analytical methods in geomechanics", Proc., 7th Int. Conf. on Comp. Methods and Advances in Geomech., Balkema, Rotterdam, The Netherlands, Vol.1, pp.3-14.
  8. Carter, J. P. and Kulhawy, F. H. (1988), Analysis and design of drilled shaft foundations socketed into rock, Final report, EL 5918/ Project 1493-4 / Electric Power Research Institute, Conell Univ., Ithaca, NY.
  9. Chang, M. F. and Broms, B. B. (1990), "Design of bored piles in residual soils based on field-performance data", Canadian Geotechnical Journal, Vol.28, pp.200-209.
  10. Chen, C. Y. and Martin, G. R. (2002), "Soil-structure interaction for landslide stabilizing piles", Computers and Geotechnics, Vol.29, pp.363-386. https://doi.org/10.1016/S0266-352X(01)00035-0
  11. Findlay, J. D., Brooks, N. J., Mure, J. N. and Heron W. (1997), Design of axially loaded piles, United Kingdom practice.
  12. Gwizdala, K. (1984), Determination of the bearing capacity and settlement from the results of static penetration tests CPT and standard penetration tests SPT, Report No. 26, Swedish Geotechnical Institute, Linkoping, pp.1-129.
  13. Hansen, B. J. (1963), "Discussion, hyperbolic stress-strain response, cohesive soils", Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol.89, No.SM 4, pp.241-242.
  14. Itasca Consulting Group, Inc. (2002), FLAC, Fast lagrangian analysis of continua, Ver. 5.0, Vol. I : User's Manual. Itasca Consulting Group, INC.
  15. Jeong, S. S., Cho, H. Y., Cho, J. Y., Seol, H. I., and Lee, D. S. (2010), "Point bearing stiffness and strength of socketted drilled shafts in korean rocks", International Journal of Rock Mechanics and Mining Sciences. Vol.47, pp.983-995. https://doi.org/10.1016/j.ijrmms.2010.05.002
  16. O'Neill, M. W. and Reese, L. C. (1972), "Behavior of bored piles in beaumont clay", Journal of the Soil mechanics and Foundation Division, ASCE, Vol.98, No.SM 2, pp.195-213.
  17. O'Neill, M. W., and Hassan, K. M. (1994), "Drilled shaft : effects of construction on performance and design criteria", Proceedings of the International Conference on Design and Construction of Deep Foundations, Federal Highways Administration, Washington D.C., Vol.1, pp.137-187.
  18. Rowe, P. K., and Armitage, H. H (1987), "Theoretical solutions for axial deformation of drilled shafts in rock", Canadian Geotechnical Journal, Vol.24, pp.114-125. https://doi.org/10.1139/t87-010
  19. Seidel, J. P. and Harberfield, C. M. (1994), "A new approach to the prediction of drilled pier performance in rock", Proc. of the International Conf. on Design and Construction of Drilled Pier.
  20. Seol, H. I, Jeong, S. S., Cho, C. H., and You, K. H. (2008), "Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)", International Journal of Rock Mechanics and Mining Sciences. Vol.45, pp.848-861. https://doi.org/10.1016/j.ijrmms.2007.09.008
  21. Vesic, A. S. (1977), Design of pile foundations, N.C.H.R.P,. Synthesis of Highway Practice 42, pp.22-26.
  22. Yu, H. S., and Sloan, S. W. (1994), "Bearing capacity of jointed rock", Proc., 8th Int. Conf. on Comp. Methods and Advances in Geomech., Balkema, Rotterdam, The Netherlands, Vol.3, pp.2403-2408.
  23. Zhang, L, and Einstein, H. H. (1998), "End bearing capacity of drilled shafts in rock", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.7, pp.574-584. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(574)

피인용 문헌

  1. A Study on the Mechanisms of Interaction between Deep Foundation Pits and the Pile Foundations of Adjacent Skewed Arches as well as Methods for Deformation Control vol.2018, pp.1099-0526, 2018, https://doi.org/10.1155/2018/6535123
  2. 암반에 설치된 현장타설말뚝의 극한선단지지력에 관한 연구 vol.29, pp.11, 2012, https://doi.org/10.7843/kgs.2013.29.11.5
  3. 축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구 vol.35, pp.4, 2012, https://doi.org/10.12652/ksce.2015.35.4.0853
  4. 지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구 vol.32, pp.8, 2012, https://doi.org/10.7843/kgs.2016.32.8.35