DOI QR코드

DOI QR Code

Effect of Surfactant on Rheological and Electrical Properties of Latex-Blended Polystyrene/Single-Walled Carbon Nanotube Nanocomposites

계면활성제가 라텍스 블렌딩 폴리스티렌/단일벽 탄소나노튜브 나노복합재료의 유변학적, 전기적 물성에 미치는 영향

  • Kang, Myung-Hwan (Department of Polymer Engineering, The University of Suwon) ;
  • Noh, Won-Jin (Department of Polymer Engineering, The University of Suwon) ;
  • Woo, Dong-Kyun (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
  • 강명환 (수원대학교 공과대학 신소재공학과) ;
  • 노원진 (수원대학교 공과대학 신소재공학과) ;
  • 우동균 (수원대학교 공과대학 신소재공학과) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2011.12.03
  • Accepted : 2012.01.05
  • Published : 2012.05.25

Abstract

Polystyrene/single-walled carbon nanotube (PS/SWCNT) nanocomposites were prepared by latex technology and the effect of surfactant (SDS) on nanotube dispersion, rheological and electrical properties was investigated. The nanocomposites were prepared through freeze-drying after mixing PS particles and aqueous SWCNT/SDS suspension. As the SDS content increased, the storage modulus and complex viscosity of the nanocomposites were increased due to enhanced dispersion of nanotubes, but if the content excessively increased, the modulus and viscosity began to decrease due to low molecular weight of SDS. The electrical conductivity sharply increased with the addition of SDS, and then did not show significant changes. This result is speculated to be the competition between the increased dispersion of nanotubes and the deterioration of electrical conductivity by SDS adsorption. An optimal ratio of SDS to SWCNT for improving electrical conductivity and end-use properties was 2. With this ratio, the electrical percolation threshold of SWCNT was less than 1 wt%.

폴리스티렌(PS)/단일벽 탄소나노튜브(SWCNT) 나노복합재료를 라텍스 기술로 제조하여 계면활성제(SDS) 첨가에 따른 SWCNT의 분산 정도와 나노복합재료의 유변학적, 전기적 물성을 고찰하였다. 나노복합재료는 단분산 PS 입자에 SDS를 첨가한 SWCNT 분산액을 혼합한 후 동결건조하여 제조하였다. SDS 함량이 증가함에 따라 나노튜브의 분산성이 향상되어 나노복합재료의 저장 탄성률과 복소 점도는 증가하지만, 지나치게 증가시킨 경우에는 저분자량의 SDS로 인해 감소하는 결과를 보여주었다. 전기 전도도는 SDS를 첨가함에 따라 급격히 향상된 후 큰 변화를 보이지 않았다. 이는 나노튜브의 분산성 향상에 의한 전기 전도도 증가와 SDS 도포에 의한 SWCNT의 전기 전도도 저하의 경쟁에 의한 것으로 추론된다. SDS를 SWCNT 함량의 2배로 첨가한 경우가 나노복합재료의 전기 전도도 및 사용 물성 향상에 최적 조건이었다. 이 경우 전도성을 부여하는 SWCNT의 임계 함량은 1 wt% 이하에서 나타났다.

Keywords

Acknowledgement

Supported by : 한국연구재단(NRF)

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162 (1985). https://doi.org/10.1038/318162a0
  2. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  3. M. M. J. Treacy, T. W. Ebbsen, and J. M. Gibson, Nature, 381, 678 (1996). https://doi.org/10.1038/381678a0
  4. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B, 58, 14013 (1998). https://doi.org/10.1103/PhysRevB.58.14013
  5. Y. Bin, M. Kitanaka, D. Zhu, and M. Matsuo, Macromolecules, 36, 6213 (2003). https://doi.org/10.1021/ma0301956
  6. P. J. F. Harris, Inter. Mater. Rev., 49, 31 (2004). https://doi.org/10.1179/095066004225010505
  7. Z. Yang, B. Dong, Y. Huang, L. Liu, F. Y. Yan, and H. L. Li, Mater. Chem. Phys., 94, 109 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.029
  8. J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 2897 (2007). https://doi.org/10.1016/j.carbon.2007.10.005
  9. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265, 1212 (1994). https://doi.org/10.1126/science.265.5176.1212
  10. H. Wang, W. Zhou, D. L. Ho, K. I. Winey, J. E. Fischer, C. J. Glinka, and E. K. Hobbie, Nano Lett., 4, 1789 (2004). https://doi.org/10.1021/nl048969z
  11. Z. Yao, N. Braidy, G. A. Botton, and A. Adronov, J. Am. Chem. Soc., 125, 16015 (2003). https://doi.org/10.1021/ja037564y
  12. J. Y. Shin, T. Premkumar, and K. E. Geckeler, Chem. Eur. J., 14, 6044 (2008). https://doi.org/10.1002/chem.200800357
  13. J. L. Bahr, J. P. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, J. Am. Chem. Soc., 123, 6536 (2001). https://doi.org/10.1021/ja010462s
  14. D. K. Woo and S. J. Lee, Korea-Australia Rheol. J., 22, 219 (2010).
  15. S. Y. Lee and S. J. Park, Bull. Korean Chem. Soc., 31, 1596 (2010). https://doi.org/10.5012/bkcs.2010.31.6.1596
  16. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y. Talmon, Nano Lett., 3, 1379 (2003). https://doi.org/10.1021/nl034524j
  17. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006). https://doi.org/10.1021/ma060733p
  18. Z. Zhang, J. Zhang, P. Chen, B. Zhang, J. He, and G. H. Hu, Carbon, 44, 692 (2006). https://doi.org/10.1016/j.carbon.2005.09.027
  19. H. J. Barraza, F. Pompeo, A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002). https://doi.org/10.1021/nl0256208
  20. J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 2897 (2007). https://doi.org/10.1016/j.carbon.2007.10.005
  21. N. Grossiord, M. E. L. Wouters, H. E. Miltner, K. Lu, J. Loos, B. V. Mele, and C. E. Koning, Eur. Polym. J., 46, 1833 (2010). https://doi.org/10.1016/j.eurpolymj.2010.06.009
  22. M. H. Kang, W. J. Noh, and S. J. Lee, Polymer(Korea), 35, 451 (2011).
  23. A. G. Ryabenko, T. V. Dorofeeva, and G. I. Zvereva, Carbon, 42, 1523 (2004). https://doi.org/10.1016/j.carbon.2004.02.005
  24. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, J. Colloid Interface Sci., 328, 421 (2008). https://doi.org/10.1016/j.jcis.2008.09.015
  25. J. L. Ou, J. K. Yang, and H. Chen, Eur. Polym. J., 37, 789 (2001). https://doi.org/10.1016/S0014-3057(00)00175-0
  26. P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004). https://doi.org/10.1016/j.carbon.2003.12.001
  27. S. Huang, M. Wang, T. Liu, W. D. Zhang, W. C. Tjiu, C. He, and X. Lu, Polym. Eng. Sci., 49, 1063 (2009). https://doi.org/10.1002/pen.21349
  28. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004). https://doi.org/10.1021/ma049164g
  29. E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, Phys. Rev. E, 52, 819 (1995). https://doi.org/10.1103/PhysRevE.52.819
  30. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006). https://doi.org/10.1016/j.polymer.2005.11.028

Cited by

  1. Rheological and electrical properties of polystyrene nanocomposites via incorporation of polymer-wrapped carbon nanotubes vol.31, pp.2, 2012, https://doi.org/10.1007/s13367-019-0012-7
  2. Poly(urethane-urea)/Thin-Walled Carbon Nanotube 나노복합체의 제조 및 특성 vol.57, pp.2, 2020, https://doi.org/10.12772/tse.2020.57.106