DOI QR코드

DOI QR Code

Preparation of Acryl Binder with Silane Type Chain Transfer Agent

실란계 사슬 이동제를 사용한 아크릴 바인더의 제조

  • Kim, Jin-Gon (Department of Chemistry, Chungbuk National University) ;
  • Shin, Min-Jae (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Shin, Jae-Sup (Department of Chemistry, Chungbuk National University)
  • Received : 2011.11.04
  • Accepted : 2011.12.26
  • Published : 2012.05.25

Abstract

Acryl binder is a representative organic additive for the manufacture of the display electronic equipment. Acryl binder is usually synthesized by radical copolymerization. Glycidyl methacrylate (GMA), methyl methacrylate (MMA), and methacrylic acid (MAA) were used in this copolymerization of acryl binder. In this study the silane type mercaptane compound was used as a chain transfer agent (CTA) to enhance the adhesion property of the acrylic binder. The CTA used in this experiment was (3-mercaptopropyl) trimethoxysilane (MPTMS). Molecular weight of the copolymer, thickness of the coating, transmittance, and adhesion property were measured. The molecular weight was controlled and the adhesion property was improved by using this silane type chain transfer agent.

디스플레이 전자 장치의 제작에 사용되는 대표적인 유기물첨가제는 아크릴 바인더이다. 이 아크릴 바인더는 라디칼 중합으로 제조되는데 본 연구에서는 glycidyl methacrylate(GMA), methyl methacrylate(MMA), methacrylic acid(MAA)를 이용하여 공중합을 시도하였다. 그리고 이 공중합체의 접착력 향상을 위해서 실란계 mercaptane 화합물을 사슬 이동제(CTA)로 사용하였다. 본 연구에서 사용된 CTA는 (3-mercaptopropyl) trimethoxysilane(MPTMS)이며, 제조된 공중합체들의 분자량, 코팅의 두께, 투과도, 접착력 등의 물성 등을 살펴보았다. 사용된 MPTMS 함량에 따라 분자량이 조절되었고, MPTMS의 함량이 증가할수록 접착력이 향상되었다.

Keywords

References

  1. A. S. Brar and A. Yadav, J. Mol. Struct., 602-603, 29 (2002). https://doi.org/10.1016/S0022-2860(01)00768-2
  2. T. Nishikubo, E. Takerhara, S. Saita, and T. Matsumura, J. Polym. Sci. Part A: Polym. Chem., 25, 3049 (1987). https://doi.org/10.1002/pola.1987.080251110
  3. K. Subramanian and A. V. R. Reddy, J. Appl. Polym. Sci., 86, 3264 (2002). https://doi.org/10.1002/app.11114
  4. J. W. Lee, J. Y. Kim, and T. H. Kim, J. Korean Soc. Imaging Sci. Tech., 6, 39 (2000).
  5. H. C. Pyun, W. B. Park, and K. S. Choi, Polymer(Korea), 2, 269 (1979).
  6. H. C. Pyun and W. B. Park, Polymer(Korea), 6, 235 (1982).
  7. W. B. Park, Polymer(Korea), 7, 254 (1983).
  8. Y. Mizutani, K. Kusukoto, and Y. Kagiyama, J. Appl. Polym. Sci., 26, 271 (1981). https://doi.org/10.1002/app.1981.070260125
  9. G. L. Jialanella and I. Piirma, J. Appl. Polym. Sci., 43, 1577 (1991). https://doi.org/10.1002/app.1991.070430821
  10. P. G. Vijayaraghavan and B. S. R. Reddy, J. Appl. Polym. Sci., 61, 935 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960808)61:6<935::AID-APP7>3.0.CO;2-I
  11. S. Thamizharasi, P. Gnanasundaram, and B. S. R. Reddy, J. Appl. Polym. Sci., 65, 1285 (1997).
  12. D. Becker, E. Hage, and L. A. Pessan, J. Appl. Polym. Sci., 106, 3248 (2007). https://doi.org/10.1002/app.26836
  13. J. L. de la Fuente, P. F. Caamero, and M. Fernndez-Garca, J. Polym. Sci. Part A: Polym. Chem., 44, 1807 (2006). https://doi.org/10.1002/pola.21294
  14. A. Arun and B. S. R. Reddy, J. Polym. Res., 11, 195 (2004). https://doi.org/10.1023/B:JPOL.0000043405.85432.33
  15. K. D. Safa and M. H. Nasirtabrizi, Polym. Bull., 57, 293 (2006). https://doi.org/10.1007/s00289-006-0564-9
  16. H. G. Woo, L. Y. Hong, S. Y. Kim, and S. H. Park, Bull. Korean Chem. Soc., 16, 774 (1995).
  17. B. Mouanda, Polymer, 38, 5301 (1997). https://doi.org/10.1016/S0032-3861(97)00066-9
  18. Y. Wu, C. Wu, M. Gong, and T. Wu, J. Appl. Polym. Sci., 102, 3580 (2006). https://doi.org/10.1002/app.24872
  19. S. H. Han, K. K. Park, and S. H. Lee, Macromol. Res., 17, 51 (2009). https://doi.org/10.1007/BF03218601
  20. K. H. Wong, M. H. Stenzel, S. Duvall, and F. Ladouceur, Chem. Mater., 22, 1878 (2010). https://doi.org/10.1021/cm9034165
  21. J. Brandrup and E. H. Immergut, Polymer Handbook, 4th ed., Wiley, New York, p II2-69 (1999).
  22. I. S. Chung, Elastomer, 40, 53 (2005).
  23. T. Furuncuolu, I. Uur, I. Deirmenci, and V. Aviyente, Macromolecules, 43, 1823 (1997).
  24. C. E. Hoyle, T. Y. Lee, and T. Roper, J. Polym. Sci. Part A: Polym. Chem., 42, 5301 (2004). https://doi.org/10.1002/pola.20366
  25. J. Zhao, M. Chen, Y. O. An, J. X. Lin, and F. Y. Yan, Appl. Surf. Sci., 255, 2295 (2008). https://doi.org/10.1016/j.apsusc.2008.07.099
  26. Z. Karimi and A. R. Mahjoub, Appl. Surf. Sci., 256, 4473 (2010). https://doi.org/10.1016/j.apsusc.2010.01.077
  27. K. Ishizu, Y. Tokuno, S. Uchida, M. Ozawa, and D. H. Lee, J. Appl. Polym. Sci., 112, 2434 (2009). https://doi.org/10.1002/app.29815
  28. Y. Tian, W. Lu, L. B. Shen, L. M. Jiang, Y. Che, and Z. Q. Shen, J. Appl. Polym. Sci., 115, 997 (2010).
  29. J. J. Chen, K. N. Struk, and A. B. Brennan, Langmuir, 27, 13754 (2011). https://doi.org/10.1021/la202225g
  30. J. M. Antonucci, S. H. Dickens, B. O. Fowler, H. K. X. Hockin, and W. G. Mcdonough, J. Res. Natl. Inst. Stand. Technol., 110, 541 (2005). https://doi.org/10.6028/jres.110.081
  31. F. Zhou, W. Liu, T. Xu, S. Liu, M. Chen, and J. Liu, J. Appl. Polym. Sci., 92, 1695 (2004). https://doi.org/10.1002/app.20121
  32. S. Nakamura, E. Pavlovic, and E. J. Kramer, J. Adhes., 83, 351 (2007). https://doi.org/10.1080/00218460701282372
  33. J. Monni, L. Alvila, J. Rainio, and T. T. Pakkanen, J. Appl. Polym. Sci., 104, 1933 (2007). https://doi.org/10.1002/app.25880
  34. S. Kim, Master Thesis, Seoul National University (2010).