DOI QR코드

DOI QR Code

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film

전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구

  • Park, Jung-Jin (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University) ;
  • Choi, Hong-June (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University) ;
  • Ko, Hwan-Soon (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University) ;
  • Jeong, Eun-Hwan (Electronic Chemical Materials Div., Samsung Cheil Industries Inc.) ;
  • Youk, Ji-Ho (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University)
  • 박정진 (인하대학교 나노시스템공학부) ;
  • 최홍준 (인하대학교 나노시스템공학부) ;
  • 고환순 (인하대학교 나노시스템공학부) ;
  • 정은환 (제일모직) ;
  • 육지호 (인하대학교 나노시스템공학부)
  • Received : 2011.10.24
  • Accepted : 2012.01.03
  • Published : 2012.05.25

Abstract

New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

전자선 조사 방법을 이용하여 편광필름용 아크릴계 고분자를 가교화시킨 후 이의 점착 특성을 평가하였다. 아크릴 공중합체는 $n$-butylacrylate(BA), 2-hydroxyethyl methacrylate(HEMA), acrylic acid(AA)를 기본 단량체로 하여 다양한 조성으로 중합하였다. 아크릴 공중합체를 25 ${\mu}m$ 두께로 PET 이형필름에 코팅한 후 편광필름에 합지하고 그 위에 전자선을 조사하여 아크릴 공중합체의 가교화 반응을 진행하였다. 모든 아크릴 공중합체는 조사선량 50 kGy에서 93% 이상의 높은 젤분율을 보였으며, 아크릴 공중합체에 도입된 HEMA 단위가 많을수록 높은 가교밀도를 보였다. BA/HEMA/AA(89.5/10/0.5 w/w/w)의 단량체 공급비로 중합된 아크릴 공중합체에 50 kGy로 전자선을 조사하여 얻어진 아크릴 점착제가 가장 우수한 박리력, 내크리프성, 내구신뢰성, 내열빛샘 특성을 보였다. 전자선 조사를 이용한 편광필름용 아크릴계 점착제의 제조 방법을 적용하면 액정 표시장치용 편광필름의 생산성 및 작업성을 크게 개선할 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. W. Ihm, Text. Sci. Eng., 38, 59 (2001).
  2. C. H. Lim, H. Ryu, and U. R. Cho, Polymer(Korea), 33, 319 (2009).
  3. S. R. Kim, I. C. Han, H. J. Choi, S. K. Jang, and I. S. Hwang, Korea Patent 0,076,984 (2004).
  4. S. R. Kim, S. K. Jang, H. J. Choi, J. K. Lee, I. C. Han, and H. R. Seong, Korea Patent 0,102,997 (2005).
  5. S. R. Kim, I. C. Han, S. K. Jang, and H. R. Seong, Korea Patent 0,076,706 (2005).
  6. H. J. Choi, J. S. Kim, and S. K. Jang, Korea Patent 0,041,238 (2007).
  7. S. J. Park, I. C. Han, W. H. Kim, A. N. Kim, and S. K. Jang, Korea Patent 0,063,365 (2007).
  8. N. M. Kim, J. M. Ha, I. C. Han, S. J. Park, W. H. Kim, and S. K. Jang, Korea Patent 0,025,980 (2007).
  9. D. H. Lee and K. E. Min, Korea Patent 0,000,193 (2008).
  10. Z. Czech, M. Gasiorowska, and J. Soroka, J. Appl. Polym. Sci., 106, 558 (2007). https://doi.org/10.1002/app.26576
  11. H. S. Joo, Y. J. Park, H. S. Do, H. J. Kim, S. Y. Song, and K. Y. Choi, J. Adhes. Sci. Technol., 21, 575 (2007). https://doi.org/10.1163/156856107781192346
  12. D. H. Lim, H. S. Do, H. J. Kim, J. S. Bang, and G. H. Yoon, J. Adhes. Sci. Technol., 21, 589 (2007). https://doi.org/10.1163/156856107781192300
  13. Z. Czech and M. Wojciechowicz, Eur. Polym. J., 42, 2153 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.022
  14. M. Husemann, B. Bietz, W. Karmann, M. Klose, and H. Neuhaus-Steinmetz, US Patent 6,939,588 (2005).
  15. K. Ebe and T. Sasaki, J. Appl. Polym. Sci., 88, 1854 (2003). https://doi.org/10.1002/app.11854
  16. Y. A. Smirnova, I. V. Vasil'eva, and A. A. Persinen, High Energ. Chem., 38, 425 (2004). https://doi.org/10.1023/B:HIEC.0000048244.77132.aa
  17. J. G. Drobny, Radiation Technology for Polymers, 2nd, CRC Press, New York, p 89 (2010).