DOI QR코드

DOI QR Code

Empirical Study on Effects of Disk Shape Filler Content and Orientation on Thermal Expansion Coefficient of PP Composites

판상형 충전제의 함량과 배향에 따른 PP복합체의 열팽창계수 영향 연구

  • Lee, Yong-Hyun (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Jeoung, Sun-Kyoung (Korea Automotive Technology Institute) ;
  • Hwang, Hyo-Yeon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Lee, Seung-Goo (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Lee, Kee-Yoon (Department of Polymer Science and Engineering, Chungnam National University)
  • 이용현 (충남대학교 고분자공학과) ;
  • 정선경 (자동차부품연구소) ;
  • 황효연 (충남대학교 고분자공학과) ;
  • 이승구 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이기윤 (충남대학교 고분자공학과)
  • Received : 2011.08.22
  • Accepted : 2011.10.29
  • Published : 2012.05.25

Abstract

Experimental study was performed regarding the effects of disc-like filler orientation and contents on the coefficient of thermal expansion (CTE) of polypropylene composites using the three dimensional ellipsoids ($a_1$ > $a_2$ > $a_3$) analyzed by two aspect ratios(${\rho}_{\alpha}=a_1/a_3$and ${\rho}_{\beta}=a_1/a_2$). Measured data were compared with the theoretical approaches proposed by Lee et al. Mica and talc were useed as disk-like fillers in the composites. As experimental results, ${\alpha}_{11}/{\alpha}_m$ decreased down to ca. 0.56 with mica content of 20 wt% and the aspect ratios, ${\rho}_{\alpha}=13.5$, ${\rho}_{\beta}=1.8$. However, ${\alpha}_{33}/{\alpha}_m$ increased to more than 1. In the case of talc, ${\alpha}_{11}/{\alpha}_m$ decreased to ca. 0.63 with 20 wt% and ${\rho}_{\alpha}=3.7$, ${\rho}_{\beta}=1.4$. Finally, the longitudinal CTEs (${\alpha}_{11}$) of polypropylene composites decreased as filler contents increased, but normal CTE (${\alpha}_{33}$) increased in the low filler contents like the theory.

두 가지의 종횡비(${\rho}_{\alpha}=a_1/a_3$ and ${\rho}_{\beta}=a_1/a_2$)에 의해 특징지어진 3차원 타원체($a_1$ > $a_2$ > $a_3$)를 사용하여 polypropylene 복합체의 판상형 충전제 함량과 방향이 열팽창률에 미치는 영향에 대해 실험적인 연구를 수행하였다. 측정된 실험적인 값은 Lee와 그의 연구자들이 제안한 이론적인 모델에 의한 계산 값과 비교분석되었다. 판상형 충전제로는 운모와 탈크가 사용되었다. 실험 결과로 운모의 경우 종횡비는 ${\rho}_{\alpha}=13.5$, ${\rho}_{\beta}=1.8$이 사용되어, 20 wt% 함량일 때 ${\alpha}_{11}/{\alpha}_m$는 약 0.56으로 감소하였으나, ${\alpha}_{33}/{\alpha}_m$는 오히려 1.018로 증가함을 보였다. 탈크의 경우의 종횡비는 ${\rho}_{\alpha}=3.7$, ${\rho}_{\beta}=1.4$이었고 ${\alpha}_{11}/{\alpha}_m$는 0.63으로 감소하였다. 결국 운모와 탈크 모두 그 함량증가에 따라 종단방향과 횡단방향에서 열팽창률은 감소하였으나 수직방향에서는 초기 낮은 충전제 함량에서는 오히려 증가하는 경향을 보였다.

Keywords

References

  1. J. D. Eshelby, Proc. Roy. Soc. Lond., A241, 376 (1957).
  2. R. Hill, J. Mech. Phys. Solids, 12, 199 (1964). https://doi.org/10.1016/0022-5096(64)90019-5
  3. T. Mori and K. Tanaka, Acta Metall., 21, 571 (1963).
  4. J. C. Halpin, Primer on Composite Materials Analysis, Technomic Pub. Co. Inc., Lancaster, 1992.
  5. G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984). https://doi.org/10.1002/pc.750050413
  6. R. A. Schapery, J. Compos. Mater., 2, 380 (1968). https://doi.org/10.1177/002199836800200308
  7. K. Wakashima, M. Otsuka, and S. Umekawa, J. Compos. Mater., 8, 391 (1974). https://doi.org/10.1177/002199837400800407
  8. K.Y. Lee and D. R. Paul, Polymer, 46, 9064 (2005). https://doi.org/10.1016/j.polymer.2005.06.113
  9. K. Y. Lee, K. H. Kim, S. K. Jeoung, S. I. Ju, J. H. Shim, N. H. Kim, S. G. Lee, S. M. Lee, J. K. Lee, and D. R. Paul, Polymer, 48, 4174 (2007). https://doi.org/10.1016/j.polymer.2007.05.036
  10. K. Y. Lee, S. R. Hong, S. K Jung, N. H. Kim, S. G. Lee, and D. R. Paul, Polymer, 49, 2146 (2008). https://doi.org/10.1016/j.polymer.2008.02.025
  11. J. M. Kim, S. K. Jung, J. H. Shim, H. Y. Hwang, and K. Y. Lee, Polymer(Korea), 34, 346 (2010).
  12. H. Y. Hwang, S. K. Jung, J. H. Shim, J. M. Kim, and K. Y. Lee, Polymer(Korea), 34, 352 (2010).
  13. S. B. Seo, Y. H. Lee, S. K. Jung, S. G. Lee, and K. Y. Lee, Polymer(Korea), 36, 229 (2012).
  14. T. Mura, Micromechanics of Defects in Solids, 2nd Ed., The Hague, Martinus Nijhoff, p 74 (1987).
  15. C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999). https://doi.org/10.1016/S0266-3538(98)00120-1
  16. P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002). https://doi.org/10.1016/S0032-3861(02)00638-9
  17. P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002). https://doi.org/10.1016/S0032-3861(02)00638-9
  18. H. S. Lee, P. D. Fasulo, W. R. Eodgers, and D. R. Paul, Polymer, 46, 11673 (2005). https://doi.org/10.1016/j.polymer.2005.09.068
  19. D. V. Howe and J. E. Mark, Polymer Data Handbook, Oxford University Press, 1998.
  20. G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, Cambridge, 1998.
  21. J. M. Margolis, Advanced Thermoset Composites Industrial and Commercial Applications, Van Nostrand Reinhold Co., NY, 1986.