DOI QR코드

DOI QR Code

Study on Flooding Phenomena at Various Stoichiometries in Transparent PEM Unit Fuel Cell

PEM 단위 연료전지 가시화 셀을 이용한 당량비 변화에 따른 플러딩 현상에 관한 연구

  • Received : 2011.12.29
  • Accepted : 2012.03.07
  • Published : 2012.06.01

Abstract

The objective of this paper is to demonstrate the cathode channel flooding effects at different stoichiometries in proton exchange membrane (PEM) fuel cells by using visualization techniques. The phenomena of liquid water formation and removal caused by current variations were also examined experimentally. Tests were conducted at cathode stoichiometries of 1.5 and 2.0, and the anode stoichiometry was fixed at 1.5. It is found that at an air-side stoichiometry of 2.0, liquid water begins to form and the flooding occurs faster than at an air-side stoichiometry of 1.5. Also, when the air-side stoichiometry of 1.5 is maintained, the dry-out phenomena is observed in the dry-out area 7.8 A following the field of flooding. Thus, a stoichiometry of 1.5 produced better performance in terms of membrane electrode assembly (MEA) durability and hydrogen ion conductivity than did a stoichiometry of 2.0, in which dry-out occurs beyond 8A.

본 논문은 고분자 전해질 연료전지 공기극 유로 내부에서 당량비에 따라 발생하는 플러딩 현상을 가시화를 통해 확인하고, 전류 변화에 따른 물의 운송 특성에 관한 연구를 수행하였다. 공기극 당량비는 1.5, 2.0, 연료극 당량비는 1.5로 고정하여 실험을 수행하였다. 연료전지 공기측 당량비 2.0로 공급하였을 때 1.5와 비교하여 짧은 시간에 물이 생성되기 시작하였으며, 플러딩 영역이 빠르게 생성되는 결과가 나타났다. 또한, 공기극 당량비 1.5로 유지하는 경우 플러딩 영역 이후에 건조화 7.8A 이후 구간에서 건조화가 진행되며, 8A 이후구간에서 건조화가 시작되는 공기극 당량비 2.0에서 작동하는 연료전지와 비교하여 넓은 영역에서 물 생성이 활발하게 이루어져 MEA의 내구성과 수소이온전도도가 우수한 결과를 확인하였다.

Keywords

References

  1. Chalk, S. G., Milliken, J. A. and Miller, J. F., 1998, "The US Department of Energy Investing in Clean Transport," J. Power Sources, Vol. 71, pp. 26-35. https://doi.org/10.1016/S0378-7753(97)02767-5
  2. Tatiana, J. P., Ernesto, F. and Gonzalez, R., 2001, "Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells," J. Electroanal Chem., Vol. 503, pp. 57-68. https://doi.org/10.1016/S0022-0728(01)00364-3
  3. Mehta, V. and Cooper, J. S., "Review and Analysis of PEM Fuel Cell Design and Manufacturing," J. Power Sources, Vol. 114, pp. 32-53.
  4. Liu, R. X., Iddir, H. and Fan, Q. B., 2000, "Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes," J. Phys. Chem., Vol. 104, pp. 3518-3531. https://doi.org/10.1021/jp992943s
  5. Ye, S., Vijh, A. K. and Dao, L. H., 1992, "A New Fuel Cell Electrocatalyst Based on Highly Porous Carbonized Polyacrylonitrile Foam with Very Low Platinum Loading," J. Electrochem. Soc., Vol .143, pp.7-9.
  6. Antolini, E., 2003, "Formation of carbonsupported PtM Alloys for Low Temperature Fuel Cells: a review," Mater. Chem. Phys., Vol. 78, pp. 563-573. https://doi.org/10.1016/S0254-0584(02)00389-9
  7. Viral, M. and Smith, C. J., 2003, "Review and Analysis of PEM Fuel Cell Design and Manufacturing," J. Power Sources, Vol. 114, pp. 32-53. https://doi.org/10.1016/S0378-7753(02)00542-6
  8. Natarajan, D. and Nguyen, T. V., 2001, "A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors," J. Electrochem. Soc., Vol. 148, No. 12, pp. A1324-A1335. https://doi.org/10.1149/1.1415032
  9. Li, X. and Sabir, I., 2005, "Review of Bipolar Plates in PEM Fuel Cells: Flow-field designs," Int. J. of Hydrogen energy, Vol. 30, pp. 359-371. https://doi.org/10.1016/j.ijhydene.2004.09.019
  10. Su, A., Chiu, Y. C and Weng, F. B., 2005, "The Impact of Flow Field Pattern on Concentration and Performance in PEMFC," Int. J. Energy Res., Vol. 29, pp. 409-425. https://doi.org/10.1002/er.1059
  11. Yoon, Y. G., Lee, W. Y., Park, G. G., Yang, T. H. and Kim C. D., 2004, "Effects of Channel Configurations of Flow Field Plates on the Performance of a PEMFC," Electrochimica Acta, Vol. 50, pp. 709-712. https://doi.org/10.1016/j.electacta.2004.01.111
  12. Kuo, J. K. and Chen, C. K., 2007, "The Effects of Buoyancy on the Performance of a PEM Fuel Cell with a Wave-like Gas Flow Channel Design by Numerical Investigation," Int. J. Heat and Mass Transfer, Vol. 50, pp. 4166-4179. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.039
  13. Kuo, J. K., Yen, T. S. and Chen, C. K., 2008, "Improvement of Performance of Gas Flow Channel in PEM Fuel Cells," Energy Conversion and Management, Vol. 49, pp. 2776-2787. https://doi.org/10.1016/j.enconman.2008.03.024
  14. Kuo, J. K., Yen, T. H. and Chen, C. K., 2008, "Three-Dimensional Numerical Analysis of PEM Fuel Cells with Straight and Wave-like Gas Flow Fields Channels," J. Power Sources, Vol. 177, pp. 96-103. https://doi.org/10.1016/j.jpowsour.2007.11.065
  15. Hakenjos, A., Muenter, H., Wittstadt, U. and Hebling, C., 2004, "A PEM Fuel Cell for Combined Measurement of Current and Temperature Distribution, and Flow Field Flooding," J. Power Sources, Vol. 131, pp. 213-216. https://doi.org/10.1016/j.jpowsour.2003.11.081
  16. Tuber, K., Pocza, D. and Hebling, C., 2003, "Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell," J. Power Sources, Vol. 144, pp. 403-414.
  17. Yang, X. G., Zhang, F. Y., Lubawy, A. L. and Wang, C. Y., 2004, "Visualization of Liquid Water Transport in a PEFC," Electrochem. Solid-State Lett., Vol. 7, No. 11, pp. A408-A411. https://doi.org/10.1149/1.1803051
  18. Barbir, F., 2005, "PEM Fuel Cells Theory and Practice," Elsevier Academic Press, USA.
  19. Paquin, M. and Frechette, L. G., 2008, "Understanding Cathode Flooding and Dry-out for Water Management in Air Breathing PEM Fuel Cells," J. Power Sources, Vol. 180, pp. 440-451. https://doi.org/10.1016/j.jpowsour.2008.02.012