DOI QR코드

DOI QR Code

Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination

  • Kim, Sae-Hae (Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Lee, Kyung-Yeol (Department of Oral Microbiology and Institute of Oral Bioscience, Chonbuk National University) ;
  • Jang, Yong-Suk (Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University)
  • 투고 : 2012.09.24
  • 심사 : 2012.10.09
  • 발행 : 2012.10.31

초록

Vaccination is one of the most effective methods available to prevent infectious diseases. Mucosa, which are exposed to heavy loads of commensal and pathogenic microorganisms, are one of the first areas where infections are established, and therefore have frontline status in immunity, making mucosa ideal sites for vaccine application. Moreover, vaccination through the mucosal immune system could induce effective systemic immune responses together with mucosal immunity in contrast to parenteral vaccination, which is a poor inducer of effective immunity at mucosal surfaces. Among mucosal vaccines, oral mucosal vaccines have the advantages of ease and low cost of vaccine administration. The oral mucosal immune system, however, is generally recognized as poorly immunogenic due to the frequent induction of tolerance against orally-introduced antigens. Consequently, a prerequisite for successful mucosal vaccination is that the orally introduced antigen should be transported across the mucosal surface into the mucosa-associated lymphoid tissue (MALT). In particular, M cells are responsible for antigen up-take into MALT, and the rapid and effective transcytotic activity of M cells makes them an attractive target for mucosal vaccine delivery, although simple transport of the antigen into M cells does not guarantee the induction of specific immune responses. Consequently, development of mucosal vaccine adjuvants based on an understanding of the biology of M cells has attracted much research interest. Here, we review the characteristics of the oral mucosal immune system and delineate strategies to design effective oral mucosal vaccines with an emphasis on mucosal vaccine adjuvants.

키워드

참고문헌

  1. Almond, J. W. 2007. Vaccine renaissance. Nat. Rev. Microbiol. 5:478-481.
  2. Rappuoli, R., C. W. Mandl, S. Black, and E. De Gregorio. 2011. Vaccines for the twenty-first century society. Nat. Rev. Immunol. 11:865-872.
  3. Mitragotri, S. 2005. Immunization without needles. Nat. Rev. Immunol. 5: 905-916.
  4. Chen, K. and A. Cerutti. 2010. Vaccination strategies to promote mucosal antibody responses. Immunity. 33: 479-491.
  5. Shin, S., S. N. Desai, B. K. Sah, and J. D. Clemens. 2011. Oral vaccines against cholera. Clin. Infect. Dis. 52:1343-1349.
  6. Czerkinsky, C. and J. Holmgren. 2009. Enteric vaccines for the developing world: a challenge for mucosal immunology. Mucosal Immunol. 2: 284-287.
  7. Pasetti, M. F., J. K. Simon, M. B. Sztein, and M. M. Levine. 2011. Immunology of gut mucosal vaccines. Immunol. Rev. 239: 125-148.
  8. Weiner, H. L., A. P. da Cunha, F. Quintana, and H. Wu. 2011. Oral tolerance. Immunol. Rev. 241: 241-259.
  9. Lycke, N. 2012. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12: 592-605.
  10. Ogra, P. L. 2003. Mucosal immunity: some historical perspective on host-pathogen interactions and implications for mucosal vaccines. Immunol. Cell. Biol. 81: 23-33.
  11. Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8: 411-420.
  12. Wells, J. M., O. Rossi, M. Meijerink, and P. van Baarlen. 2011. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl. Acad. Sci. USA 108 Suppl 1:4607-4614.
  13. Iwasaki, A. 2007. Mucosal dendritic cells. Annu. Rev. Immunol. 25:381-418.
  14. McGuckin, M. A., S. K. Lindén, P. Sutton, and T. H. Florin. 2011. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9: 265-278.
  15. Garrett, W. S., J. I. Gordon, and L. H. Glimcher. 2010. Homeostasis and inflammation in the intestine. Cell 140:859-870.
  16. Heazlewood, C. K., M. C. Cook, R. Eri, G. R. Price, S. B. Tauro, D. Taupin, D. J. Thornton, C. W. Png, T. L. Crockford, R. J. Cornall, R. Adams, M. Kato, K. A. Nelms, N. A. Hong, T. H. Florin, C. C. Goodnow, and M. A. McGuckin. 2008. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med.5:e54.
  17. Biton, M., A. Levin, M. Slyper, I. Alkalay, E. Horwitz, H. Mor, S. Kredo-Russo, T. Avnit-Sagi, G. Cojocaru, F. Zreik, Z. Bentwich, M. N. Poy, D. Artis, M. D. Walker, E. Hornstein, E. Pikarsky, and Y. Ben-Neriah. 2011. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat. Immunol. 12: 239-246.
  18. Bevins, C. L. and N. H. Salzman. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9:356-368.
  19. Kaser, A., M. Tomczak, and R. S. Blumberg. 2011. "ER stress(ed out)!": Paneth cells and ischemia-reperfusion injury of the small intestine. Gastroenterology 140:393-396.
  20. Niederreiter, L. and A. Kaser. 2011. Endoplasmic reticulum stress and inflammatory bowel disease. Acta Gastroenterol. Belg. 74: 330-333.
  21. Iliev, I. D., E. Mileti, G. Matteoli, M. Chieppa, and M. Rescigno. 2009. Intestinal epithelial cells promote colitis- protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2:340-350.
  22. Rimoldi, M., M. Chieppa, V. Salucci, F. Avogadri, A. Sonzogni, G. M. Sampietro, A. Nespoli, G. Viale, P. Allavena, and M. Rescigno. 2005. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6:507-514.
  23. He, B., W. Xu, P. A. Santini, A. D. Polydorides, A. Chiu, J. Estrella, M. Shan, A. Chadburn, V. Villanacci, A. Plebani, D. M. Knowles, M. Rescigno, and A. Cerutti. 2007. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:812-826.
  24. Kyd, J. M. and A. W. Cripps. 2008. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine, 26:6221-6224.
  25. Jang, M. H., M. N. Kweon, K. Iwatani, M. Yamamoto, K. Terahara, C. Sasakawa, T. Suzuki, T. Nochi, Y. Yokota, P. D. Rennert, T. Hiroi, H. Tamagawa, H. Iijima, J. Kunisawa, Y. Yuki, and H. Kiyono. 2004. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA 101: 6110-6115.
  26. Corr, S. C., C. C. Gahan, and C. Hill. 2008. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52: 2-12.
  27. Owen, R. L. and A. L. Jones. 1974. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66:189-203
  28. Heath, J. P. 1996. Epithelial cell migration in the intestine. Cell. Biol. Int. 20: 139-146.
  29. Gebert, A., S. Fassbender, K. Werner, and A. Weissferdt. 1999. The development of M cells in Peyer's patches is restricted to specialized dome-associated crypts. Am. J. Pathol. 154:1573-1582.
  30. Hsieh, E. H., X. Fernandez, J. Wang, M. Hamer, S. Calvillo, M. Croft, B. S. Kwon, and D. D. Lo. 2010. CD137 is required for M cell functional maturation but not lineage commitment. Am. J. Pathol. 177: 666-676.
  31. Knoop, K. A., N. Kumar, B. R. Butler, S. K. Sakthivel, R. T. Taylor, T. Nochi, H. Akiba, H. Yagita, H. Kiyono, and I. R. Williams. 2009. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol. 183: 5738-5747.
  32. Mach, J., T. Hshieh, D. Hsieh, N. Grubbs, and A. Chervonsky. 2005. Development of intestinal M cells. Immunol. Rev. 206: 177-189.
  33. Clark, M. A. and M. A. Jepson. 2003. Intestinal M cells and their role in bacterial infection. Int. J. Med. Microbiol. 293: 17-39.
  34. Pickard, J. M. and A. V. Chervonsky. 2010. Sampling of the intestinal microbiota by epithelial M cells. Curr. Gastroenterol. Rep. 12: 331-339.
  35. Azizi, A., A. Kumar, F. Diaz-Mitoma, and J. Mestecky. 2010. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog. 6: e1001147.
  36. Finzi, G., M. Cornaggia, C. Capella, R. Fiocca, F. Bosi, E. Solcia, and I. M. Samloff. 1993. Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry 99: 201-211.
  37. Kernéis, S., A. Bogdanova, J. P. Kraehenbuhl, and E. Pringault. 1997. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277: 949-952.
  38. Gullberg, E., M. Leonard, J. Karlsson, A. M. Hopkins, D. Brayden, A. W. Baird, and P. Artursson. 2000. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem. Biophys. Res. Commun. 279: 808-813.
  39. Brandtzaeg, P., H. Kiyono, R. Pabst, and M. W. Russell. 2008. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 1: 31-37.
  40. Brandtzaeg, P. 2009. Mucosal immunity: induction, dissemination, and effector functions. Scand. J. Immunol. 70: 505-515.
  41. Otczyk, D. C. and A. W. Cripps. 2010. Mucosal immunization: a realistic alternative. Hum. Vaccin. 6: 978-1006.
  42. Bemark, M., P. Boysen, and N. Y. Lycke. 2012. Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Ann. N. Y. Acad. Sci. 1247:97-116.
  43. Strugnell, R. A. and O. L. Wijburg. 2010. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol. 8: 656-667.
  44. Cerutti, A., K. Chen, and A. Chorny. 2011. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29: 273-293.
  45. Hoft, D. F, V. Brusic, and I. G. Sakala. 2011. Optimizing vaccine development. Cell. Microbiol. 13: 934-942.
  46. McAleer, J. P. and J. K. Kolls. 2011. Mechanisms controlling Th17 cytokine expression and host defense. J. Leukoc. Biol. 90: 263-270.
  47. Blaschitz, C. and M. Raffatellu. 2010. Th17 cytokines and the gut mucosal barrier. J. Clin. Immunol. 30: 196-203.
  48. Sheridan, B. S. and L. Lefrançois. 2011. Regional and mucosal memory T cells. Nat. Immunol. 12: 485-491.
  49. Borges, O., F. Lebre, D. Bento, G. Borchard, and H. E. Junginger. 2010. Mucosal vaccines: recent progress in understanding the natural barriers. Pharm. Res. 27: 211-223.
  50. Cho, K. A., J. E. Cha, and S. Y. Woo. 2008. Oral tolerance increased the proportion of CD8+ T cells in mouse intestinal lamina propria. Immune Netw. 8: 46-52.
  51. Rescigno, M., U. Lopatin, and M. Chieppa. 2008. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr. Opin. Immunol. 20: 669-675.
  52. Czerkinsky, C. and J. Holmgren. 2012. Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr. Top. Microbiol. Immunol. 354: 1-18.
  53. Mora, J. R., M. Iwata, B. Eksteen, S. Y. Song, T. Junt, B. Senman, K. L. Otipoby, A. Yokota, H. Takeuchi, P. Ricciardi-Castagnoli, K. Rajewsky, D. H. Adams, and U. H. von Andrian. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157-1160.
  54. Iwata, M., A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S. Y. Song. 2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21: 527-538.
  55. Pavot, V., N. Rochereau, C. Genin, B. Verrier, and S. Paul. 2012. New insights in mucosal vaccine development. Vaccine 30: 142-154.
  56. Mestecky, J., H. Nguyen, C. Czerkinsky, and H. Kiyono. 2008. Oral immunization: an update. Curr. Opin. Gastroenterol. 24: 713-719.
  57. Sturm, J. T., M. E. Carr, M. G. Luxenberg, J. K. Swoyer, and J. J. Cicero. 1990. The prevalence of Neisseria gonorrhoeae and Chlamydia trachomatis in victims of sexual assault. Ann. Emerg. Med. 19: 587-590.
  58. Streatfield, S. J. and J. A. Howard. 2003. Plant-based vaccines. Int. J. Parasitol. 33: 479-493.
  59. Walmsley, A. M. and C. J. Arntzen. 2000. Plants for delivery of edible vaccines. Curr. Opin. Biotechnol. 11: 126-129.
  60. Haq, T. A., H. S. Mason, J. D. Clements, and C. J. Arntzen. 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714-716.
  61. Yuki, Y., D. Tokuhara, T. Nochi, H. Yasuda, M. Mejima, S. Kurokawa, Y. Takahashi, N. Kataoka, U. Nakanishi, Y. Hagiwara, K. Fujihashi, F. Takaiwa, and H. Kiyono. 2009. Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity. Vaccine 27: 5982-5988.
  62. Coffman, R. L., A. Sher, and R. A. Seder. 2010. Vaccine adjuvants: putting innate immunity to work. Immunity 33: 492-503.
  63. Reed, S. G., S. Bertholet, R. N. Coler, and M. Friede. 2009. New horizons in adjuvants for vaccine development. Trends Immunol. 30: 23-32.
  64. Babai, I., S. Samira, Y. Barenholz, Z. Zakay-Rones, and E Kedar. 1999. A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. II. Induction of TH1 and TH2 responses in mice. Vaccine 17: 1239-1250.
  65. Kuolee, R. and W. Chen. 2008. M cell-targeted delivery of vaccines and therapeutics. Expert Opin. Drug. Deliv. 5: 693-702.
  66. Gebert, A., H. J. Rothkötter, and R. Pabst. 1996. M cells in Peyer's patches of the intestine. Int. Rev. Cytol. 167: 91-159.
  67. Foster, N., M. A. Clark, M. A. Jepson, and B. H. Hirst. 1998. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 16: 536-541.
  68. Clark, M. A., M. A. Jepson, N. L. Simmons, and B. H. Hirst. 1994. Differential surface characteristics of M cells from mouse intestinal Peyer's and caecal patches. Histochem. J. 26: 271-280.
  69. Gupta, P. N., K. Khatri, A. K. Goyal, N. Mishra, and S. P. Vyas. 2007. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J. Drug. Target. 15: 701-713.
  70. Clark, M. A., H. Blair, L. Liang, R. N. Brey, D. Brayden, and B. H. Hirst. 2001. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20: 208-217.
  71. Devriendt, B., B. G. De Geest, B. M. Goddeeris, and E. Cox. 2012. Crossing the barrier: Targeting epithelial receptors for enhanced oral vaccine delivery. J. Control Release. 160: 431-439.
  72. Nochi, T., Y. Yuki, A. Matsumura, M. Mejima, K. Terahara, D. Y. Kim, S. Fukuyama, K. Iwatsuki-Horimoto, Y. Kawaoka, T. Kohda, S. Kozaki, O. Igarashi, and H. Kiyono. 2007. A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204: 2789-2796.
  73. Hirabayashi, J., T. Hashidate, Y. Arata, N. Nishi, T. Nakamura, M. Hirashima, T. Urashima, T. Oka, M. Futai, W. E. Muller, F. Yagi, and K. Kasai. 2002. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta. 1572: 232-254.
  74. Keely, S., L. E. Glover, T. Weissmueller, C. F. MacManus, S. Fillon, B. Fennimore, and S. P. Colgan. 2010. Hypoxia-inducible factor-dependent regulation of platelet-activating factor receptor as a route for gram-positive bacterial translocation across epithelia. Mol. Biol. Cell. 21: 538-546.
  75. Tyrer, P., A. R. Foxwell, A. W. Cripps, M. A. Apicella, and J. M. Kyd. 2006. Microbial pattern recognition receptors mediate M-cell uptake of a gram-negative bacterium. Infect. Immun. 74: 625-631.
  76. Kim, S. H., K. W. Seo, J. Kim, K. Y. Lee, and Y. S. Jang. 2010. The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J. Immunol. 185: 5787-5795.
  77. Clark, M. A., B. H. Hirst, and M. A. Jepson. 1998. M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect. Immun. 66: 1237-1243.
  78. Wolf, J. L., R. S. Kauffman, R. Finberg, R. Dambrauskas, B. N. Fields, and J. S. Trier. 1983. Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine. Gastroenterology 85: 291-300.
  79. Hase, K., K. Kawano, T. Nochi, G. S. Pontes, S. Fukuda, M. Ebisawa, K. Kadokura, T. Tobe, Y. Fujimura, S. Kawano, A. Yabashi, S. Waguri, G. Nakato, S. Kimura, T. Murakami, M. Iimura, K. Hamura, S. Fukuoka, A. W. Lowe, K. Itoh, H. Kiyono, and H. Ohno. 2009. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462: 226-230.
  80. Nakato, G., K. Hase, M. Suzuki, M. Kimura, M. Ato, M. Hanazato, M. Tobiume, M. Horiuchi, R. Atarashi, N. Nishida, M. Watarai, K. Imaoka, and H. Ohno. 2012. Cutting Edge: Brucella abortus exploits a cellular prion protein on intestinal M cells as an invasive receptor. J. Immunol. 189: 1540-1544.
  81. Kim, S. H., D. I. Jung, I. Y. Yang, J. Kim, K. Y. Lee, T. Nochi, H. Kiyono, and Y. S. Jang. 2011. M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. Eur. J. Immunol. 41: 3219-3229.
  82. Kunisawa, J., Y. Kurashima, and H. Kiyono. 2012. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug. Deliv. Rev. 64: 523-530.

피인용 문헌

  1. M cell specific markers in man and domestic animals: Valuable tools in vaccine development vol.36, pp.4, 2013, https://doi.org/10.1016/j.cimid.2013.03.002
  2. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice vol.32, pp.25, 2012, https://doi.org/10.1016/j.vaccine.2014.03.022
  3. Systemic and local mucosal immune responses induced by orally delivered Bacillus subtilis spore expressing leucine aminopeptidase 2 of Clonorchis sinensis vol.113, pp.8, 2012, https://doi.org/10.1007/s00436-014-3975-9
  4. Convergence of Nanotechnology and Cancer Prevention: Are We There Yet? vol.7, pp.10, 2014, https://doi.org/10.1158/1940-6207.capr-14-0079
  5. Intranasal formulations: promising strategy to deliver vaccines vol.11, pp.10, 2012, https://doi.org/10.1517/17425247.2014.931936
  6. Enhanced Mucosal Immune Responses Induced by a Combined Candidate Mucosal Vaccine Based on Hepatitis A Virus and Hepatitis E Virus Structural Proteins Linked to Tuftsin vol.10, pp.4, 2012, https://doi.org/10.1371/journal.pone.0123400
  7. Exopolysaccharides Produced by Leuconostoc mesenteroides Strain NTM048 as an Immunostimulant To Enhance the Mucosal Barrier and Influence the Systemic Immune Response vol.63, pp.31, 2012, https://doi.org/10.1021/acs.jafc.5b01960
  8. The Mucosal Immune System of Teleost Fish vol.4, pp.3, 2012, https://doi.org/10.3390/biology4030525
  9. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity vol.14, pp.11, 2015, https://doi.org/10.1038/nrd4608
  10. Tracking translocation of glucan microparticles targeting M cells: implications for oral drug delivery vol.4, pp.17, 2012, https://doi.org/10.1039/c5tb02706c
  11. Mucosal immunization of BALB/c mice with DNA vaccines encoding the SEN1002 and SEN1395 open reading frames of Salmonella enterica serovar Enteritidis induces protective immunity vol.144, pp.2, 2012, https://doi.org/10.1017/s095026881500120x
  12. Micro- and nanoparticulates for DNA vaccine delivery vol.241, pp.9, 2012, https://doi.org/10.1177/1535370216643771
  13. The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra vol.7, pp.6, 2012, https://doi.org/10.1128/mbio.01184-16
  14. Cutting Edge: LL-37–Mediated Formyl Peptide Receptor-2 Signaling in Follicular Dendritic Cells Contributes to B Cell Activation in Peyer’s Patch Germinal Centers vol.198, pp.2, 2012, https://doi.org/10.4049/jimmunol.1600886
  15. An oral microjet vaccination system elicits antibody production in rabbits vol.9, pp.380, 2017, https://doi.org/10.1126/scitranslmed.aaf6413
  16. Noninvasive vaccination against infectious diseases vol.14, pp.7, 2012, https://doi.org/10.1080/21645515.2018.1461296
  17. Peyer’s Patches as a Portal for DNA Delivery by Lactococcus lactisin Vivo vol.41, pp.2, 2012, https://doi.org/10.1248/bpb.b17-00657
  18. High-Altitude-Induced alterations in Gut-Immune Axis: A review vol.37, pp.2, 2012, https://doi.org/10.1080/08830185.2017.1407763
  19. Oral Vaccine Delivery for Intestinal Immunity—Biological Basis, Barriers, Delivery System, and M Cell Targeting vol.10, pp.9, 2012, https://doi.org/10.3390/polym10090948
  20. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines vol.6, pp.None, 2019, https://doi.org/10.3389/fvets.2019.00020
  21. Targeting peptide‐enhanced antibody and CD11c+dendritic cells to inclusion bodies expressing protective antigen against ETEC in mice vol.33, pp.2, 2012, https://doi.org/10.1096/fj.201800289rrr
  22. Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization vol.21, pp.None, 2012, https://doi.org/10.2174/1389450121666200609113252
  23. Non-invasive mucosal vaccine delivery: advantages, challenges and the future vol.17, pp.4, 2012, https://doi.org/10.1080/17425247.2020.1731468
  24. The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery vol.18, pp.12, 2012, https://doi.org/10.3390/md18120605
  25. Immunohistochemical distribution of Immunoglobulin-A in relation to the intestinal microbiota of Cairina moschata (Muscovy) duck vol.1918, pp.5, 2012, https://doi.org/10.1088/1742-6596/1918/5/052004
  26. Plant-made vaccines against parasites: bioinspired perspectives to fight against Chagas disease vol.20, pp.11, 2021, https://doi.org/10.1080/14760584.2021.1893170
  27. Engineering Nano‐ and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport vol.33, pp.51, 2012, https://doi.org/10.1002/adma.202104139