Acknowledgement
Supported by : 한국연구재단
References
- 강주원, 김기철, 수동 TMD의 적용을 통한 아치 구조물의 지진응답 제어, 대한건축학회논문집 구조계, 26(7), 37-44, 2010
- 강주원, 석근영, 아치구조물의 기둥강성 변화에 따른 지진응답 특성분석을 위한 진동대 실험, 대한건축학회논문집 구조계, 26(1), 87-94, 2010
- 김기철, 김광일, 강주원, 면진 트러스 아치 구조물의 지진거동 분석, 한국공간구조학회논문집, 8(2), 73-84, 2008
- 김승덕, 윤태영, 손수덕, 스텝하중을 받는 얕은 정현형 아치의 연속 응답 스펙트럼에 의한 동적 좌굴 특성 분석, 대한건축학회논문집 구조계, 20(10), 3-10, 2004
- 김연태, 허택녕, 김문겸, 황학주, 비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정, 대한토목학회논문집, 12(2), 43-54, 1992
- 박광규, 김문겸, 황학주, 낮은 포물선아치의 동적 안정영역에 관한 연구, 대한토목학회논문집, 6(3), 1-9, 1986
- 정찬우, 석근영, 강주원, 갤러킨법을 이용한 아치의 고유진동 해석, 한국공간구조학회논문집, 7(4), 55-61, 2007
- Adomian, G., and Rach, R., Generalization of adomian polynomials to functions of several variables, Computers & mathematics with Applications, 24, 11-24, 1992
- Adomian, G., and Rach, R., Modified adomian polynomials, Mathematical and Computer Modeling, 24, 39-46, 1996
- Ariaratnam, S.T., and Sankar, T.S., Dynamic snap-through of shallow arches under stochastic loads, AIAA Journal, 6(5), 798-802, 1968 https://doi.org/10.2514/3.4601
- Barrio, R., Performance of the Taylor series method for ODEs/DAEs, Applied Mathematics and Computation, 163, 525-545, 2005 https://doi.org/10.1016/j.amc.2004.02.015
- Barrio, R., Blesa, F., and Lara, M., VSVO Formulation of the Taylor method for the numerical solution of ODEs, Computers & mathematics with Applications, 50, 93-111, 2005 https://doi.org/10.1016/j.camwa.2005.02.010
- Bi, Q., and Dai, H.H., Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance, Journal of Sound and Vibration, 233(4), 557-571, 2000
- Blair, K.B., Krousgrill, C.M., and Farris, T.N., Non-linear dynamic response of shallow arches to harmonic forcing, Journal of Sound and Vibration, 194(3), 353-367, 1996 https://doi.org/10.1006/jsvi.1996.0363
- Budiansky, B., and Roth, R.S. Axisymmetric dynamic buckling of clamped shallow spherical shells; Collected papers on instability of shells structures, NASA TND-1510, 597-606, 1962
- Chen, J.S., and Lin, J.S., Stability of a shallow arch with one end moving at constant speed, International Journal of Non-linear Mechanics, 41, 706-715, 2006 https://doi.org/10.1016/j.ijnonlinmec.2006.04.004
- Chen, J.S., and Li, Y.T., Effects of elastic foundation on the snap-through buckling of a shallow arch under a moving point load, International Journal of Solids and Structures, 43, 4220-4237, 2006 https://doi.org/10.1016/j.ijsolstr.2005.04.040
- Chowdhury, M.S.H., Hashim, I., and Momani, S., The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system, Chaos Solutions & Fractal, 40, 1929-1937, 2009 https://doi.org/10.1016/j.chaos.2007.09.073
- De Rosa, M.A., and Franciosi, C., Exact and approximate dynamic analysis of circular arches using DQM, International Journal of Solids and Structures, 37, 1103-1117, 2000 https://doi.org/10.1016/S0020-7683(98)00275-3
- Donaldson, M.T., and Plaut, R.H., Dynamic stability boundaries for a sinusoidal shallow arch under pulse loads, AIAA Journal, 21(3), 469-471, 1983 https://doi.org/10.2514/3.8097
- He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation, 135, 73-79, 2003 https://doi.org/10.1016/S0096-3003(01)00312-5
- He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons & Fractals, 26, 695-700, 2005 https://doi.org/10.1016/j.chaos.2005.03.006
- Hoff, N.J., and Bruce, V.G., Dynamic analysis of the buckling of laterally loaded flat arches, J. Math. Phys., 32(4), 276-288, 1954
- Hsu, C.S., Equilibrium configurations of a shallow arch of arbitrary shape and their dynamic stability character, International Journal of Nonlinear Mechanics, 3(2), 113-136, 1968 https://doi.org/10.1016/0020-7462(68)90011-5
- Humphreys, J.S., On dynamic snap buckling of shallow arches, AIAA Journal, 4(5), 878-886, 1966 https://doi.org/10.2514/3.3561
- Kong, X., Wang, B., and Hu, J., Dynamic snap buckling of an elastoplastic shallow arch with elastically supported and clamped ends, Computer and Structures, 55(1), 163-166, 1995 https://doi.org/10.1016/0045-7949(94)00416-Z
- Kounadis, A.N., Raftoyiannis, J., and Mallis, J., Dynamic buckling of an arch model under impact loading, Journal of Sound and Vibration, 134(2), 193-202, 1989 https://doi.org/10.1016/0022-460X(89)90648-2
- Lacarbonara, W., and Rega, G., Resonant nonlinear normal modes-part2: activation/ orthogonality conditions for shallow structural systems, International Journal of Non-linear Mechanics, 38, 873-887, 2003 https://doi.org/10.1016/S0020-7462(02)00034-3
- Levitas, J., Singer, J., and Weller, T., Global dynamic stability of a shallow arch by poincare-like simple cell mapping, International Journal of Non-linear Mechanics, 32(2), 411-424, 1997 https://doi.org/10.1016/S0020-7462(96)00046-7
- Lin, J.S., and Chen, J.S., Dynamic snap-through of a laterally loaded arch under prescribed end motion, International Journal of Solids and Structures, 40, 4769-4787, 2003 https://doi.org/10.1016/S0020-7683(03)00181-1
- Lock, M.H., Snapping of a shallow sinusoidal arch under a step pressure load, AIAA Journal, 4(7), 1249-1256, 1996
- Sadighi, A., Ganji, D.D., and Ganjavi, B., Travelling wave solutions of the sine-gordon and the coupled sine-gordon equations using the homotopy perturbation method, Scientia Iranica Transaction B: Mechanical Engineering, 16, 189-195, 2007
- Sundararajan, V., and Kumani, D.S., Dynamic snapbuckling of shallow arches under inclined loads, AIAA Journal, 10(8), 1090-1091, 1972 https://doi.org/10.2514/3.50304
- Tseng, Y.P., Huang, C.S., and Lin, C.J., Dynamic stiffness analysis for in-plane vibrations of arches with variable curvature, Journal of Sound and Vibration, 207(1), 15-31, 1997 https://doi.org/10.1006/jsvi.1997.1112