DOI QR코드

DOI QR Code

Survey of the Applications of NGS to Whole-Genome Sequencing and Expression Profiling

  • Lim, Jong-Sung (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Beom-Soon (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Jeong-Soo (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Chan-Seok (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yang, Tae-Jin (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University) ;
  • Rhee, Jae-Sung (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Lee, Jae-Seong (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Choi, Ik-Young (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2012.02.03
  • 심사 : 2012.02.17
  • 발행 : 2012.03.31

초록

Recently, the technologies of DNA sequence variation and gene expression profiling have been used widely as approaches in the expertise of genome biology and genetics. The application to genome study has been particularly developed with the introduction of the nextgeneration DNA sequencer (NGS) Roche/454 and Illumina/ Solexa systems, along with bioinformation analysis technologies of whole-genome $de$ $novo$ assembly, expression profiling, DNA variation discovery, and genotyping. Both massive whole-genome shotgun paired-end sequencing and mate paired-end sequencing data are important steps for constructing $de$ $novo$ assembly of novel genome sequencing data. It is necessary to have DNA sequence information from a multiplatform NGS with at least $2{\times}$ and $30{\times}$ depth sequence of genome coverage using Roche/454 and Illumina/Solexa, respectively, for effective an way of de novo assembly. Massive shortlength reading data from the Illumina/Solexa system is enough to discover DNA variation, resulting in reducing the cost of DNA sequencing. Whole-genome expression profile data are useful to approach genome system biology with quantification of expressed RNAs from a wholegenome transcriptome, depending on the tissue samples. The hybrid mRNA sequences from Rohce/454 and Illumina/Solexa are more powerful to find novel genes through $de$ $novo$ assembly in any whole-genome sequenced species. The $20{\times}$ and $50{\times}$ coverage of the estimated transcriptome sequences using Roche/454 and Illumina/Solexa, respectively, is effective to create novel expressed reference sequences. However, only an average $30{\times}$ coverage of a transcriptome with short read sequences of Illumina/Solexa is enough to check expression quantification, compared to the reference expressed sequence tag sequence.

키워드

참고문헌

  1. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376-380.
  2. Jiang Y, Lu J, Peatman E, Kucuktas H, Liu S, Wang S, et al. A pilot study for channel catfish whole genome sequencing and de novo assembly. BMC Genomics 2011;12:629. https://doi.org/10.1186/1471-2164-12-629
  3. Li J, Jiang J, Leung FC. 6-10x pyrosequencing is a practical approach for whole prokaryote genome studies. Gene 2012;494:57-64. https://doi.org/10.1016/j.gene.2011.11.051
  4. Cleary DF, Smalla K, Mendonca-Hagler LC, Gomes NC. Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing. PLoS One 2012;7:e29380. https://doi.org/10.1371/journal.pone.0029380
  5. Hong PY, Croix JA, Greenberg E, Gaskins HR, Mackie RI. Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS One 2011;6: e25042. https://doi.org/10.1371/journal.pone.0025042
  6. Schaik VW, Top J, Riley DR, Boekhorst J, Vrijenhoek JE, Schapendonk CM, et al. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 2010;11:239. https://doi.org/10.1186/1471-2164-11-239
  7. Shendure J, Mitra RD, Varma C, Church GM. Advanced sequencing technologies: methods and goals. Nat Rev Genet 2004;5:335-344.
  8. Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev 2006;16:545-552. https://doi.org/10.1016/j.gde.2006.10.009
  9. Allard MW, Luo Y, Strain E, Li C, Keys CE, Son I, et al. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. BMC Genomics 2012;13:32. https://doi.org/10.1186/1471-2164-13-32
  10. Schroder J, Maus I, Trost E, Tauch A. Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 2011;12:545. https://doi.org/10.1186/1471-2164-12-545
  11. Park DH, Thapa SP, Choi BS, Kim WS, Hur JH, Cho JM, et al. Complete genome sequence of Japanese erwinia strain ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 2011;193:586-587. https://doi.org/10.1128/JB.01246-10
  12. Seo YS, Lim J, Choi BS, Kim H, Goo E, Lee B, et al. Complete genome sequence of Burkholderia gladioli BSR3. J Bacteriol 2011;193:3149. https://doi.org/10.1128/JB.00420-11
  13. Nam SH, Kim A, Choi SH, Kang A, Kim DW, Kim RN, et al. Genome sequence of Leuconostoc carnosum KCTC 3525. J Bacteriol 2011;193:6100-6101. https://doi.org/10.1128/JB.06028-11
  14. Fan L, Bo S, Chen H, Ye W, Kleinschmidt K, Baumann HI, et al. Genome sequence of Bacillus subtilis subsp. spizizenii gtP20b, isolated from the Indian ocean. J Bacteriol 2011;193:1276-1277. https://doi.org/10.1128/JB.01351-10
  15. Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of the giant panda genome. Nature 2010;463:311-317. https://doi.org/10.1038/nature08696
  16. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. The genome of woodland strawberry (Fragaria vesca ). Nat Genet 2011;43:109-116. https://doi.org/10.1038/ng.740
  17. Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, et al. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 2010;6:e1000891. https://doi.org/10.1371/journal.pgen.1000891
  18. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578-579. https://doi.org/10.1093/bioinformatics/btq683
  19. Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011;43:1275-1280. https://doi.org/10.1038/ng.997
  20. Harper M, Lee CJ. Genome-wide analysis of mutagenesis bias and context sensitivity of N-methyl-N'-nitro-Nnitrosoguanidine (NTG). Mutat Res 2012;731:64-67. https://doi.org/10.1016/j.mrfmmm.2011.10.011
  21. Zhang A, Yang M, Hu P, Wu J, Chen B, Hua Y, et al. Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics 2011;12:523. https://doi.org/10.1186/1471-2164-12-523
  22. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011; 477:289-294. https://doi.org/10.1038/nature10413
  23. Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G, Paszkiewicz K, et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S A 2011;108:15258-15263. https://doi.org/10.1073/pnas.1105100108
  24. Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J, Mittnik A, et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci U S A 2011;108:E746-E752. https://doi.org/10.1073/pnas.1105107108
  25. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008;18:1851-1858. https://doi.org/10.1101/gr.078212.108
  26. Pelleymounter LL, Moon I, Johnson JA, Laederach A, Halvorsen M, Eckloff B, et al. A novel application of pattern recognition for accurate SNP and indel discovery from high-throughput data: targeted resequencing of the glucocorticoid receptor co-chaperone FKBP5 in a Caucasian population. Mol Genet Metab 2011;104:457-469. https://doi.org/10.1016/j.ymgme.2011.08.019
  27. Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 1992;20:1679-1684. https://doi.org/10.1093/nar/20.7.1679
  28. Chen SH, Chen RY, Xu XL, Xiao WB. Microarray analysis and phenotypic response of Pseudomonas aeruginosa PAO1 under hyperbaric oxyhelium conditions. Can J Microbiol 2012;58:158-169. https://doi.org/10.1139/w11-121
  29. Adriaens ME, Jaillard M, Eijssen LM, Mayer CD, Evelo CT. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genomics 2012;13:42. https://doi.org/10.1186/1471-2164-13-42
  30. Yang KE, Kwon J, Rhim JH, Choi JS, Kim SI, Lee SH, et al. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: a comparative proteomics and microarray study. Mol Cells 2011;32:99-106. https://doi.org/10.1007/s10059-011-0064-0
  31. Ekblom R, Balakrishnan CN, Burke T, Slate J. Digital gene expression analysis of the zebra finch genome. BMC Genomics 2010;11:219. https://doi.org/10.1186/1471-2164-11-219
  32. Toulza E, Shin MS, Blanc G, Audic S, Laabir M, Collos Y, et al. Gene expression in proliferating cells of the dinoflagellate Alexandrium catenella (Dinophyceae). Appl Environ Microbiol 2010;76:4521-4529. https://doi.org/10.1128/AEM.02345-09
  33. Bai X, Zhang W, Orantes L, Jun TH, Mittapalli O, Mian MA, et al. Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines . PLoS One 2010;5:e11370. https://doi.org/10.1371/journal.pone.0011370
  34. Downs KP, Shen Y, Pasquali A, Beldorth I, Savage M, Gallier K, et al. Characterization of telomeres and telomerase expression in Xiphophorus. Comp Biochem Physiol C Toxicol Pharmacol 2012;155:89-94. https://doi.org/10.1016/j.cbpc.2011.05.005
  35. Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP, Nuzhdin SV, et al. De novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination. Mol Biol Evol 2012;29:771-786. https://doi.org/10.1093/molbev/msr248
  36. Hestand MS, Klingenhoff A, Scherf M, Ariyurek Y, Ramos Y, van Workum W, et al. Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Res 2010;38:e165. https://doi.org/10.1093/nar/gkq602
  37. Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, et al. De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 2011;52:1501-1514. https://doi.org/10.1093/pcp/pcr097
  38. Hsiao YY, Chen YW, Huang SC, Pan ZJ, Fu CH, Chen WH, et al. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genomics 2011;12:360. https://doi.org/10.1186/1471-2164-12-360
  39. Matsumura H, Yoshida K, Luo S, Kimura E, Fujibe T, Albertyn Z, et al. High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS One 2010;5:e12010. https://doi.org/10.1371/journal.pone.0012010
  40. Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010;11:220. https://doi.org/10.1186/gb-2010-11-12-220
  41. Kumar S, Blaxter ML. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010;11:571. https://doi.org/10.1186/1471-2164-11-571

피인용 문헌

  1. vol.19, pp.6, 2014, https://doi.org/10.1111/gtc.12147
  2. high-osmolarity glycerol response (HOG) signalling pathway vol.94, pp.3, 2014, https://doi.org/10.1111/mmi.12785