DOI QR코드

DOI QR Code

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong (Department of Life Chemistry, Catholic University of Daegu)
  • Received : 2011.12.22
  • Accepted : 2012.02.04
  • Published : 2012.05.20

Abstract

The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Keywords

References

  1. Nobrega, G. F.; Sambrano, J. R.; de Souza, A. R.; Quealt, J. J.; Longo, E. J. Mol. Struc. (Theochem.) 2001, 544, 151. https://doi.org/10.1016/S0166-1280(01)00374-8
  2. Iijima, K.; Nakano, M. J. Mol. Struct. 1999, 485, 255. https://doi.org/10.1016/S0022-2860(99)00047-2
  3. Iijima, K.; Beagley, B. J. Mol. Struct. 1991, 248, 133. https://doi.org/10.1016/0022-2860(91)85008-Q
  4. Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. J. Am. Chem. Soc. 1993, 115, 9687. https://doi.org/10.1021/ja00074a039
  5. Csazar, A. G. J. Mol. Struct. 1995, 346, 141. https://doi.org/10.1016/0022-2860(94)09017-J
  6. Csazar, A. G. J. Phys. Chem. 1996, 100, 3541. https://doi.org/10.1021/jp9533640
  7. Godfrey, P. D.; Brown, R. D.; Rodgers, F. M. J. Mol. Struc. 1996, 376, 65. https://doi.org/10.1016/0022-2860(95)09065-7
  8. Maul, R.; Ortmann, F.; Preuss, M.; Hannewald, K.; Bechstedt, F. J. Comput. Chem. 2007, 28, 1817. https://doi.org/10.1002/jcc.20683
  9. Donohue, J. J. Am. Chem. Soc. 1950, 72, 949. https://doi.org/10.1021/ja01158a079
  10. Dunitz, J. D.; Ryan, R. R. Acta Crystallogr. 1966, 21, 617. https://doi.org/10.1107/S0365110X66003578
  11. Simpson, H. J., Jr.; Marsh, R. E. Acta Crystallogr. 1966, 20, 550. https://doi.org/10.1107/S0365110X66001221
  12. Lehmann, M. S.; Koetzle, T. F.; Hamilton, W. C. J. Am. Chem. Soc. 1972, 94, 2657. https://doi.org/10.1021/ja00763a016
  13. Wu, R.; McMahon, T. B. J. Am. Chem. Soc. 2008, 130, 3065. https://doi.org/10.1021/ja076685l
  14. Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313. https://doi.org/10.1074/jbc.272.33.20313
  15. Stadtman, E. R. Ann. Rev. Biochem. 1993, 62, 797. https://doi.org/10.1146/annurev.bi.62.070193.004053
  16. Sies, H. Oxidative Stress-Oxidants and Anti-Oxidants; Academic Press: London, 1991.
  17. Simic, M. G.; Taylor, K. A.; Ward, J. F.; Von Sonntag, C. Oxygen Radicals in Biology and Medicine; Plenum Press: New York, 1988.
  18. Davies, K. J. A. Oxidative Damage and Repair: Chemical, Niological and Medical Aspects; Pergamon Press: New York, 1991.
  19. Von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor and Francis: London, 1987.
  20. Bagheri-Majdi, E.; Ke, Y.; Orlova, G.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. J. Phys. Chem. B 2004, 108, 11170. https://doi.org/10.1021/jp049531q
  21. Sambrano, J. R.; de Souza, A. R.; Queralt, J. J.; Andres, J.; Longo, E. Chem. Phys. Lett. 1998, 294, 1. https://doi.org/10.1016/S0009-2614(98)00820-3
  22. Lee, G. Y. J. Comput. Chem. 2009, 30, 2181.
  23. Lee, G. Y. J. Phys. Org. Chem. 2010, 23, 91.
  24. Simon, S.; Gil, A.; Sodupe, M.; Bertran, J. J. Mol. Struct. (Theochem.) 2005, 727, 191. https://doi.org/10.1016/j.theochem.2005.02.053
  25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Peterson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dennenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A. Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.; Pittsburgh PA. 2003.
  26. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  27. Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 1997, 101, 9142. https://doi.org/10.1021/jp970571m
  28. Bertran, J.; Oliva, A.; Rodriguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159. https://doi.org/10.1021/ja9804417
  29. Blanco, S.; Lesarri, A.; Lopez, J. C.; Alonso, J. L. J. Am. Chem. Soc. 2004, 126, 11675. https://doi.org/10.1021/ja048317c
  30. Rodriguez-Santiago, L.; Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 2000, 104, 1256. https://doi.org/10.1021/jp992414o
  31. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  32. Weinhlod, F.; Carpenter J. E. The Structure of Small Molecules and Ions; Plenum: New York, 1988; p 227.
  33. Gronert, S.; O'Hair, R. A. J. Am. Chem. Soc. 1995, 117, 2071. https://doi.org/10.1021/ja00112a022
  34. Stepanian, S. J.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A 1998, 102, 4623. https://doi.org/10.1021/jp973479z
  35. Sodupe, M.; Bertran, J.; Rodriguez-Santiago, L.; Baerends, E. J. J. Phys. Chem. A 1999, 103, 166. https://doi.org/10.1021/jp983195u
  36. Braïda, B.; Hiberty, P. C.; Savin, A. J. Phys. Chem. A 1998, 102, 7872. https://doi.org/10.1021/jp982441z

Cited by

  1. DFT Study of the Effects of Halogen Anions on the Stability of Alanine Zwitterion vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1202
  2. A DFT Study of the Intramolecular Hydrogen Bonding of Alanine and Its Effects on Ionization Energies vol.59, pp.6, 2015, https://doi.org/10.5012/jkcs.2015.59.6.541
  3. A theoretical and experimental 1H NMR spectroscopy study of the stereoelectronic interactions that rule the conformational energies of alanine and valine methyl ester vol.26, pp.10, 2013, https://doi.org/10.1002/poc.3180
  4. Reactions between neutral molecules and cation-radicals in the gas-phase: Can protonation occur without proton transfer? vol.390, pp.None, 2015, https://doi.org/10.1016/j.ijms.2015.08.019