References
- Nobrega, G. F.; Sambrano, J. R.; de Souza, A. R.; Quealt, J. J.; Longo, E. J. Mol. Struc. (Theochem.) 2001, 544, 151. https://doi.org/10.1016/S0166-1280(01)00374-8
- Iijima, K.; Nakano, M. J. Mol. Struct. 1999, 485, 255. https://doi.org/10.1016/S0022-2860(99)00047-2
- Iijima, K.; Beagley, B. J. Mol. Struct. 1991, 248, 133. https://doi.org/10.1016/0022-2860(91)85008-Q
- Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. J. Am. Chem. Soc. 1993, 115, 9687. https://doi.org/10.1021/ja00074a039
- Csazar, A. G. J. Mol. Struct. 1995, 346, 141. https://doi.org/10.1016/0022-2860(94)09017-J
- Csazar, A. G. J. Phys. Chem. 1996, 100, 3541. https://doi.org/10.1021/jp9533640
- Godfrey, P. D.; Brown, R. D.; Rodgers, F. M. J. Mol. Struc. 1996, 376, 65. https://doi.org/10.1016/0022-2860(95)09065-7
- Maul, R.; Ortmann, F.; Preuss, M.; Hannewald, K.; Bechstedt, F. J. Comput. Chem. 2007, 28, 1817. https://doi.org/10.1002/jcc.20683
- Donohue, J. J. Am. Chem. Soc. 1950, 72, 949. https://doi.org/10.1021/ja01158a079
- Dunitz, J. D.; Ryan, R. R. Acta Crystallogr. 1966, 21, 617. https://doi.org/10.1107/S0365110X66003578
- Simpson, H. J., Jr.; Marsh, R. E. Acta Crystallogr. 1966, 20, 550. https://doi.org/10.1107/S0365110X66001221
- Lehmann, M. S.; Koetzle, T. F.; Hamilton, W. C. J. Am. Chem. Soc. 1972, 94, 2657. https://doi.org/10.1021/ja00763a016
- Wu, R.; McMahon, T. B. J. Am. Chem. Soc. 2008, 130, 3065. https://doi.org/10.1021/ja076685l
- Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313. https://doi.org/10.1074/jbc.272.33.20313
- Stadtman, E. R. Ann. Rev. Biochem. 1993, 62, 797. https://doi.org/10.1146/annurev.bi.62.070193.004053
- Sies, H. Oxidative Stress-Oxidants and Anti-Oxidants; Academic Press: London, 1991.
- Simic, M. G.; Taylor, K. A.; Ward, J. F.; Von Sonntag, C. Oxygen Radicals in Biology and Medicine; Plenum Press: New York, 1988.
- Davies, K. J. A. Oxidative Damage and Repair: Chemical, Niological and Medical Aspects; Pergamon Press: New York, 1991.
- Von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor and Francis: London, 1987.
- Bagheri-Majdi, E.; Ke, Y.; Orlova, G.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. J. Phys. Chem. B 2004, 108, 11170. https://doi.org/10.1021/jp049531q
- Sambrano, J. R.; de Souza, A. R.; Queralt, J. J.; Andres, J.; Longo, E. Chem. Phys. Lett. 1998, 294, 1. https://doi.org/10.1016/S0009-2614(98)00820-3
- Lee, G. Y. J. Comput. Chem. 2009, 30, 2181.
- Lee, G. Y. J. Phys. Org. Chem. 2010, 23, 91.
- Simon, S.; Gil, A.; Sodupe, M.; Bertran, J. J. Mol. Struct. (Theochem.) 2005, 727, 191. https://doi.org/10.1016/j.theochem.2005.02.053
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Peterson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dennenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A. Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.; Pittsburgh PA. 2003.
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 1997, 101, 9142. https://doi.org/10.1021/jp970571m
- Bertran, J.; Oliva, A.; Rodriguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159. https://doi.org/10.1021/ja9804417
- Blanco, S.; Lesarri, A.; Lopez, J. C.; Alonso, J. L. J. Am. Chem. Soc. 2004, 126, 11675. https://doi.org/10.1021/ja048317c
- Rodriguez-Santiago, L.; Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 2000, 104, 1256. https://doi.org/10.1021/jp992414o
- Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
- Weinhlod, F.; Carpenter J. E. The Structure of Small Molecules and Ions; Plenum: New York, 1988; p 227.
- Gronert, S.; O'Hair, R. A. J. Am. Chem. Soc. 1995, 117, 2071. https://doi.org/10.1021/ja00112a022
- Stepanian, S. J.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A 1998, 102, 4623. https://doi.org/10.1021/jp973479z
- Sodupe, M.; Bertran, J.; Rodriguez-Santiago, L.; Baerends, E. J. J. Phys. Chem. A 1999, 103, 166. https://doi.org/10.1021/jp983195u
- Braïda, B.; Hiberty, P. C.; Savin, A. J. Phys. Chem. A 1998, 102, 7872. https://doi.org/10.1021/jp982441z
Cited by
- DFT Study of the Effects of Halogen Anions on the Stability of Alanine Zwitterion vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1202
- A DFT Study of the Intramolecular Hydrogen Bonding of Alanine and Its Effects on Ionization Energies vol.59, pp.6, 2015, https://doi.org/10.5012/jkcs.2015.59.6.541
- A theoretical and experimental 1H NMR spectroscopy study of the stereoelectronic interactions that rule the conformational energies of alanine and valine methyl ester vol.26, pp.10, 2013, https://doi.org/10.1002/poc.3180
- Reactions between neutral molecules and cation-radicals in the gas-phase: Can protonation occur without proton transfer? vol.390, pp.None, 2015, https://doi.org/10.1016/j.ijms.2015.08.019