References
- Ansari, S.A., Zbikowski, R. and Knowles, K. (2006), "Aerodynamic modelling of insect-like flapping flight for micro air vehicles", Prog. Aerosp. Sci., 42(2), 129-172. https://doi.org/10.1016/j.paerosci.2006.07.001
- Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985), "Flight mechanics of a dragonfly", J. Exper. Bio., 116(1), 79-107.
- Bao, L., Hu, J.S., Yu, Y.L., Cheng, P., Xu, B.Q. and Tong, B.G. (2006), "Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion", Appl. Math. Mech.- Eng., 27(6), 741-748. https://doi.org/10.1007/s10483-006-0604-1
- Betteridge, D.S. and Archer, R.D. (1974), "A study of the mechanics of flapping wings", Aeronautical Quarterly, 25, 129-142. https://doi.org/10.1017/S0001925900006892
- Chandar, D.D.J. and Damodaran, M. (2010), "Computation of unsteady low Reynolds number free-flight aerodynamics of flapping wings", J. Aircraft, 47(1), 141-150. https://doi.org/10.2514/1.44456
- Chopra, I. (2002), "Review of state of art of smart structures and integrated systems", AIAA J., 40(11), 2145- 2187. https://doi.org/10.2514/2.1561
- Chung, H.C., Kummari, K.L., Croucher, S.J., Lawson, N., Guo, S. and Huang, Z. (2008), "Coupled piezoelectric fans with two degree of freedom motion for the application of flapping wing micro aerial vehicles", Sensor. Actuat. A - Phys., 147(2), 607-612. https://doi.org/10.1016/j.sna.2008.06.017
- Chung, H.C., Kummari, K.L., Croucher, S.J., Lawson, N., Guo, S., Whatmore, R.W. and Huang, Z. (2009), "Development of piezoelectric fans for flapping wing application", Sensor. Actuat. A - Phys., 149(1), 136-142. https://doi.org/10.1016/j.sna.2008.10.004
- Combes, S.A. and Daniel, T.L. (2003), "Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending", J. Exper. Bio., 206(17), 2989-2997. https://doi.org/10.1242/jeb.00524
- Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M. and Garcia, E. (2002), "The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles", J. Intell. Mater. Syst. Struct., 13(9), 611-615. https://doi.org/10.1106/104538902032463
- DeLaurier, J.D. (1993), "An aerodynamic model for flapping-wing flight", Aeronaut. J., 97(964), 125-130.
- Dickinson, M.H., Lehmann, F.O. and Sane, S.P. (1999), "Wing rotation and the aerodynamic basis of insect flight", Science, 284(5422), 1954-1960. https://doi.org/10.1126/science.284.5422.1954
- Ganguli, R., Gorb, S., Lehmann, F.O., Mukherjee, S. and Mukherjee, S. (2010), "An experimental and numerical study of Calliphora wing structure", Exp. Mech., 50(8), 1183-1197. https://doi.org/10.1007/s11340-009-9316-8
- Hsieh, S.R., Shaw, S.W. and Pierre, C. (1994), "Normal modes for large amplitude vibration of a cantilever beam", Int. J. Solids Struct., 31(40), 1981-2014. https://doi.org/10.1016/0020-7683(94)90203-8
- Issac, K.K and Agrawal, S.K. (2007), "An investigation into the use of springs and wing motions to minimize the power expended by a pigeon-sized mechanical bird for steady flight", J. Mech. Design., 129(4), 381-389. https://doi.org/10.1115/1.2429696
- Ke, S., Zhigang, W. and Chao, Y. (2008), "Analysis and flexible structural modeling for oscillating wing utilizing aeroelasticity", Chinese Aeronaut. J., 21(5), 402-410. https://doi.org/10.1016/S1000-9361(08)60052-7
- Kim, D.K., Han, J.H. and Kwon, K.J. (2009), "Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators", Smart Mater. Struct., 18(2), 024008. https://doi.org/10.1088/0964-1726/18/2/024008
- Kim, D.K., Kim, H.I., Han, J.H. and Kwon, K.J. (2008), "Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites", J. Intell. Mater. Syst. Struct., 19(3), 423-431. https://doi.org/10.1177/1045389X07083618
- Kim, W.K., Ko, J.W., Park, H.C. and Byun, D. (2009), "Effects of corrugation of the dragonfly wing on gliding performance", J. Theor. Biol., 260(4), 523-530. https://doi.org/10.1016/j.jtbi.2009.07.015
- Kim, D.K., Lee, J.S. and Han, J.H. (2011), "Improved aerodynamic model for efficient analysis of flapping wing flight", AIAA J., 49(4), 868-872. https://doi.org/10.2514/1.J050556
- Lee, J.S., Kim, J.K., Kim, D.K. and Han, J.H. (2011), "Longitudinal flight dynamics of bio-inspired ornithopter considering fluid-structure interaction", AIAA J., 34(3), 667-677.
- Madangopal, R., Khan, Z.A. and Agrawal, S.K. (2005), "Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics", J. Mech. Design, 127(4), 809-816. https://doi.org/10.1115/1.1899690
- Mahmoodi, S.N. and Jalili, N. (2007), "Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers", Int. J. Nonlinear Mech., 42(4), 577-587. https://doi.org/10.1016/j.ijnonlinmec.2007.01.019
- McIntosh, S.H., Agrawal, S.K. and Khan, Z. (2006), "Design of a mechanism for biaxial rotation of a wing for a hovering vehicle", IEEE/ASME Trans. Mech., 11(2), 145-153. https://doi.org/10.1109/TMECH.2006.871089
- Mukherjee, S. and Ganguli, R. (2010), "Non-linear dynamic analysis of a piezoelectrically actuated flapping wing", J. Intell. Mater. Syst. Struct., 21(12), 1157-1167. https://doi.org/10.1177/1045389X10378776
- Nayfeh, A.H. (1973), Perturbation methods, Wiley, New York.
- Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear oscillations, Wiley, NewYork.
- Nguyen, V.Q., Syaifuddin, M., Park, H.C., Byun, D.Y., Goo, N.S. and Yoon, K.J. (2008), "Characteristics of an insect-mimicking flapping system actuated by a unimorph piezoceramic actuator", J. Intell. Mater. Syst. Struct., 19(10), 1185-1193. https://doi.org/10.1177/1045389X07084203
- Nguyen, V.Q., Park, H.C., Goo, N.S. and Byun, D.Y. (2010), "Characteristics of a Beetle's free flight and a flapping-wing system that mimics Beetle flight", J. Bio. Eng., 7(1), 77-86. https://doi.org/10.1016/S1672-6529(09)60195-5
- Norberg, U.M. (1985), "Evolution of vertebrate flight: an aerodynamic model for the transient from gliding to active flight", Am. Nat., 126(3), 303-327. https://doi.org/10.1086/284419
- Pawar, P.M. and Jung, S.N. (2008), "Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system", Smart Mater. Struct., 17(6), 065009: 1-11.
- Philps, P.J. East, R.A. and Pratt, N.H. (1981), "An unsteady lifting-line theory of flapping wings with application to the forward flight of birds", J. Fluid Mech., 112(11), 97-125. https://doi.org/10.1017/S0022112081000311
- Raney, D.L. and Slominski, E.C. (2004), "Mechanization and control concepts for biologically inspired micro aerial vehicles", J. Aircraft, 41(6), 1257-1265. https://doi.org/10.2514/1.5514
- Rayner, J.M.V. (1979), "Vortex theory of animal flight. 2. Forward flight of birds", J. Fluid Mech., 91(4), 731-763. https://doi.org/10.1017/S0022112079000422
- Roget, B., Sitaraman, J., Harmon, R., Grauer, J., Hubbard, J. and Humbert, S. (2009), "Computational study of flexible wing ornithopter flight", J. Aircraft, 46(6), 2016-2031. https://doi.org/10.2514/1.43187
- Rosenfeld, N.C. and Wereley, N.M. (2009), "Time-periodic stability of a flapping insect wing structure in hover", J. Aircraft, 46(2), 450-464. https://doi.org/10.2514/1.34938
- Singh, B. and Chopra, I. (2008), "Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis", AIAA J., 46(9), 2115-2135. https://doi.org/10.2514/1.28192
- Sitti, M. (2003), "Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax", IEEE-ASME Trans. Mech., 8(1), 26-36. https://doi.org/10.1109/TMECH.2003.809126
- Sunada, S., Zeng, L.J. and Kawachi, K. (1998), "The relationship between dragonfly wing structure and torsional deformation", J. Theor. Biol., 193(1), 39-45. https://doi.org/10.1006/jtbi.1998.0678
- Syaifuddin, M., Park, H.C. and Goo, N.S. (2006), "Design and evaluation of a LIPCA-actuated flapping device", Smart Mater. Struct., 15(5), 1225-1230. https://doi.org/10.1088/0964-1726/15/5/009
- Thakkar, D. and Ganguli, R. (2006a), "Single-crystal piezoceramic actuation for dynamic stall suppression", Sensor. Actuat. A - phys., 128(1), 151-157. https://doi.org/10.1016/j.sna.2006.01.012
- Thakkar, D. and Ganguli, R. (2006b), "Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor", Smart Mater. Struct., 15(2), 331-341. https://doi.org/10.1088/0964-1726/15/2/013
- Toda, M. and Osaka, S. (1979), "Vibrational fan using the piezoelectric polymer PVF2", Proceedings of the IEEE, 67(8), 1171-1173. https://doi.org/10.1109/PROC.1979.11419
- VandenBerg, C. and Ellington, C.P. (1997), "The vortex wake of a 'hovering' model hawkmoth", Philos. T. R. Soc. B., 352(1351), 317-328. https://doi.org/10.1098/rstb.1997.0023
- Wait, S.M., Basak, S., Garimella, S.V. and Raman, A. (2007), "Piezoelectric fans using higher flexural modes for electronics cooling applications", IEEE T. Compon. Pack. T., 30(1), 119-128. https://doi.org/10.1109/TCAPT.2007.892084
- Yamamoto, M. and Isogai, K. (2005), "Measurement of unsteady fluid dynamics forces for a mechanical dragonfly model", AIAA J., 43(12), 2475-2480. https://doi.org/10.2514/1.15899
- Yang, L.J., Hsu, C.K., Han, H.C. and Miao, J.M. (2009), "Light flapping micro aerial vehicle using electricaldischarge wire-cutting technique", J. Aircraft, 46(6), 1866-1874. https://doi.org/10.2514/1.38862
- Yao, K. and Uchino, K.J. (2001), "Analysis on a composite cantilever beam coupling a piezoelectric bimorph to an elastic blade", Sensor. Actuat. A - Phys., 89(3), 215-221. https://doi.org/10.1016/S0924-4247(00)00552-5
- Zehetner, C. and Irschik, H. (2008), "On the static and dynamic stability of beams with an axial piezoelectric actuation", Smart Struct. Syst., 4(1), 67-84. https://doi.org/10.12989/sss.2008.4.1.067
- Zeng, K., Pang, Y.S., Shen, L., Rajan, K.K. and Lim, L.C. (2008), "Elastic modulus, hardness and fracture behavior of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal", Mater. Sci. Eng. A., 472(1-2), 35-42. https://doi.org/10.1016/j.msea.2007.03.008
- Zhang, J. and Lu, X.Y. (2009), "Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight", Phys. Rev. E., 80(1), 017302-017304. https://doi.org/10.1103/PhysRevE.80.017302
- Zhang, R., Jiang, B. and Cao, W. (2002), "Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal", J. Mater. Sci. Lett., 21(23), 1877-1879. https://doi.org/10.1023/A:1021573431692