DOI QR코드

DOI QR Code

Regulation of Skeletal Muscle Differentiation by Akt

Akt에 의한 근육세포의 분화 조절

  • Woo, Dae-Han (MRC for Ischemic Tissue Regeneration, Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine) ;
  • Yun, Sung-Ji (MRC for Ischemic Tissue Regeneration, Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine) ;
  • Kim, Eun-Kyoung (MRC for Ischemic Tissue Regeneration, Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine) ;
  • Ha, Jung-Min (MRC for Ischemic Tissue Regeneration, Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine) ;
  • Shin, Hwa-Kyoung (Department of Anatomy, Pusan National University School of Korean Medicine) ;
  • Bae, Sun-Sik (MRC for Ischemic Tissue Regeneration, Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine)
  • 우대한 (부산대학교 의학전문대학원 약리학교실) ;
  • 윤성지 (부산대학교 의학전문대학원 약리학교실) ;
  • 김은경 (부산대학교 의학전문대학원 약리학교실) ;
  • 하정민 (부산대학교 의학전문대학원 약리학교실) ;
  • 신화경 (부산대학교 한의학전문대학원 해부학교실) ;
  • 배순식 (부산대학교 의학전문대학원 약리학교실)
  • Received : 2012.01.06
  • Accepted : 2012.03.07
  • Published : 2012.04.30

Abstract

Akt plays an important role in a variety of cellular physiologies such as growth, proliferation, and differentiation. In skeletal muscle, Akt has been implicated in regulating regeneration, hypertrophy, and atrophy. In this study, the role of Akt has been examined during skeletal muscle differentiation. Culturing C2C12 myoblasts under low serum (1% horse serum) and high density converted cell morphology from a round shape to an elongated and multi-nucleated shape. Morphological changes were initiated from day 2 of differentiation. In addition, the expression of both myogenin G and myogenin D was elevated from day 2 of differentiation. Skeletal muscle differentiation was abolished by silencing Akt1 or Akt2, but was significantly enhanced by the over-expression of either Akt1 or Akt2. The activation of Akt was observed from day 2 of differentiation and disappeared after day 7. The expression of kruppel-like factor 4 was observed from day 6 of differentiation. Moreover, this expression was blocked in cells silencing either Akt1 or Akt2. In addition, the promoter activity of kruppel-like factor 4 was significantly reduced in cells silencing Akt1 or Akt2. These results suggest that Akt regulates skeletal muscle differentiation through the regulation of kruppel-like factor 4 expression.

Akt는 다양한 세포에서 성장, 발달, 증식, 분화와 같은 생리적 활성에 중요한 역할을 하고 골격근 세포에서 Akt는 재생 및 비대와 위축을 조절한다고 알려져 있다. 골격근 세포의 분화에 있어서 Akt의 역할을 밝히고자 본 연구를 수행하였다. 골격근 세포를 분화 시키기 위해 고밀도 및 저농도의 serum 상태에서 배양하며, 분화된 C2C12 근아세포는 둥근 모양에서 다핵을 가진 긴 모양으로 바뀐다. 이러한 형태학적 변화는 분화 시킨 후 2일부터 일어났다. 또한, 골격근 분화 표지인자인 myogenin D와 myogenin G의 발현은 2일 후 관찰되었다. C2C12 세포주에 Akt1 또는 Akt2의 발현을 저하시키면 이와 더불어 골격근으로의 분화도 저해됨을 확인하였고, 이와는 반대로 Akt1 또는 Akt2를 과발현 시키면 골격근으로 분화가 촉진됨을 알 수 있었다. 이와 더불어 Akt의 활성은 분화유도 2일 후부터 관찰되었고 7일 이후로는 감소하였다. Kruppel-like factor 4의 발현은 6일부터 증가하는 것이 관찰이 되었다. Kruppel-like factor 4의 발현 또한 Akt1 또는 Akt2의 발현양이 감소된 C2C12 근아세포에서 줄어들어 있는 것을 확인하였다. 또한 Kruppel-like factor 4의 프로모터 부위에 대한 전사조절능력이 Akt1 또는 Akt2의 발현을 저하시켰을 때 같이 떨어짐을 확인하였다. 이러한 결과들로 보아 Akt가 골격근 분화를 조절하는데 있어 중요하며, Kruppel-like factor 4 발현이 이를 조절하는 데 있어 중요한 역할을 할 것이라 판단된다.

Keywords

References

  1. Alder, J. K., 3rd Georgantas, R. W., Hildreth, R. L., Kaplan, I. M., Morisot, S., Yu, X., McDevitt, M. and Civin, C. I. 2008. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J. Immunol. 180, 5645-5652. https://doi.org/10.4049/jimmunol.180.8.5645
  2. Banerjee, S. S., Feinberg, M. W., Watanabe, M., Gray, S., Haspel, R. L., Denkinger, D. J., Kawahara, R., Hauner, H. and Jain, M. K. 2003. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J. Biol. Chem. 278, 2581-2584. https://doi.org/10.1074/jbc.M210859200
  3. Basu, P., Morris, P. E., Haar, J. L., Wani, M. A., Lingrel, J. B., Gaensler, K. M. and Lloyd, J. A. 2005. KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic ${\beta}$-like globin genes in vivo. Blood 106, 2566-2571. https://doi.org/10.1182/blood-2005-02-0674
  4. Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J. and Yancopoulos, G. D. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014-1019. https://doi.org/10.1038/ncb1101-1014
  5. Chen, W. S., Xu, P. Z., Gottlob, K., Chen, M. L., Sokol, K., Shiyanova, T., Roninson, I., Weng, W., Suzuki, R., Tobe, K., Kadowaki, T. and Hay, N. 2001. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15, 2203-2208. https://doi.org/10.1101/gad.913901
  6. Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., 3rd Crenshaw, E. B., Kaestner, K. H., Bartolomei, M. S., Shulman, G. I. and Birnbaum, M. J. 2001. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 $(PKB{\beta})$. Science 292, 1728-1731. https://doi.org/10.1126/science.292.5522.1728
  7. Easton, R. M., Cho, H., Roovers, K., Shineman, D. W., Mizrahi, M., Forman, M. S., Lee, V. M., Szabolcs, M., de Jong, R., Oltersdorf, T., Ludwig, T., Efstratiadis, A. and Birnbaum, M. J. 2005. Role for Akt3/protein kinase $B{\gamma}$ in attainment of normal brain size. Mol. Cell. Biol. 25, 1869-1878. https://doi.org/10.1128/MCB.25.5.1869-1878.2005
  8. Godmann, M., Katz, J. P., Guillou, F., Simoni, M., Kaestner, K. H. and Behr, R. 2008. Kruppel-like factor 4 is involved in functional differentiation of testicular Sertoli cells. Dev. Biol. 315, 552-566. https://doi.org/10.1016/j.ydbio.2007.12.018
  9. Halayko, A. J., Kartha, S., Stelmack, G. L., McConville, J., Tam, J., Camoretti-Mercado, B., Forsythe, S. M., Hershenson, M. B. and Solway, J. 2004. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation. Am. J. Respir. Cell Mol. Biol. 31, 266-275. https://doi.org/10.1165/rcmb.2003-0272OC
  10. Hayashi, K., Takahashi, M., Kimura, K., Nishida, W., Saga, H. and Sobue, K. 1999. Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J. Cell. Biol. 145, 727-740. https://doi.org/10.1083/jcb.145.4.727
  11. Jiang, J., Chan, Y. S., Loh, Y. H., Cai, J., Tong, G. Q., Lim, C. A., Robson, P., Zhong, S. and Ng, H. H. 2008. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10, 353-360. https://doi.org/10.1038/ncb1698
  12. Kaliman, P., Canicio, J., Shepherd, P. R., Beeton, C. A., Testar, X., Palacin, M. and Zorzano, A. 1998. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells. Mol. Endocrinol. 12, 66-77. https://doi.org/10.1210/mend.12.1.0047
  13. Katz, J. P., Perreault, N., Goldstein, B. G., Lee, C. S., Labosky, P. A., Yang, V. W. and Kaestner, K. H. 2002. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619-2628.
  14. Kim, E. K., Yun, S. J., Do, K. H., Kim, M. S., Cho, M., Suh, D. S., Kim, C. D., Kim, J. H., Birnbaum, M. J. and Bae, S. S. 2008. Lysophosphatidic acid induces cell migration through the selective activation of Akt1. Exp. Mol. Med. 40, 445-452. https://doi.org/10.3858/emm.2008.40.4.445
  15. Kim, E. K., Yun, S. J., Ha, J. M., Kim, Y. W., Jin, I. H., Yun, J., Shin, H. K., Song, S. H., Kim, J. H., Lee, J. S., Kim, C. D. and Bae, S. S. 2011. Selective activation of Akt1 by mammalian target of rapamycin complex 2 regulates cancer cell migration, invasion, and metastasis. Oncogene 30, 2954-2963. https://doi.org/10.1038/onc.2011.22
  16. Kohn, A. D., Summers, S. A., Birnbaum, M. J. and Roth, R. A. 1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372-31378. https://doi.org/10.1074/jbc.271.49.31372
  17. Le Grand, F. and Rudnicki, M. A. 2007. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19, 628-633. https://doi.org/10.1016/j.ceb.2007.09.012
  18. Liang, J., Zubovitz, J., Petrocelli, T., Kotchetkov, R., Connor, M. K., Han, K., Lee, J. H., Ciarallo, S., Catzavelos, C., Beniston, R., Franssen, E. and Slingerland, J. M. 2002. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med. 8, 1153-1160. https://doi.org/10.1038/nm761
  19. Marte, B. M. and Downward, J. 1997. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355-358. https://doi.org/10.1016/S0968-0004(97)01097-9
  20. Miller, I. J. and Bieker, J. J. 1993. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell. Biol. 13, 2776-2786.
  21. Miner, J. H. and Wold, B. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87, 1089-1093. https://doi.org/10.1073/pnas.87.3.1089
  22. Nemer, M. and Horb, M. E. 2007. The KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation. Cell Cycle 6, 117-121. https://doi.org/10.4161/cc.6.2.3718
  23. Pearson, R., Fleetwood, J., Eaton, S., Crossley, M. and Bao, S. 2008. Kruppel-like transcription factors: a functional family. Int. J. Biochem. Cell Biol. 40, 1996-2001. https://doi.org/10.1016/j.biocel.2007.07.018
  24. Rommel, C., Clarke, B. A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G. D. and Glass, D. J. 1999. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738-1741. https://doi.org/10.1126/science.286.5445.1738
  25. Sarker, K. P. and Lee, K. Y. 2004. L6 myoblast differentiation is modulated by Cdk5 via the PI3K-AKT-p70S6K signaling pathway. Oncogene 23, 6064-6070. https://doi.org/10.1038/sj.onc.1207819
  26. Scheid, M. P. and Woodgett, J. R. 2001. PKB/AKT: functional insights from genetic models. Nat. Rev. Mol. Cell Biol. 2, 760-768. https://doi.org/10.1038/35096067
  27. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. and Kessler, P. D. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93-98. https://doi.org/10.1161/hc0102.101442
  28. Troussard, A. A., Mawji, N. M., Ong, C., Mui, A., St - Arnaud, R. and Dedhar, S. 2003. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J. Biol. Chem. 278, 22374-22378. https://doi.org/10.1074/jbc.M303083200
  29. Tureckova, J., Wilson, E. M., Cappalonga, J. L. and Rotwein, P. 2001. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J. Biol. Chem. 276, 39264-39270. https://doi.org/10.1074/jbc.M104991200
  30. Turner, J. and Crossley, M. 1999. Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci. 24, 236-240. https://doi.org/10.1016/S0968-0004(99)01406-1
  31. van Vliet, J., Turner, J. and Crossley, M. 2000. Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res. 28, 1955-1962. https://doi.org/10.1093/nar/28.9.1955
  32. Wang, C., Han, M., Zhao, X. M. and Wen, J. K. 2008. Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J. Biochem. 144, 313-321. https://doi.org/10.1093/jb/mvn068
  33. Wassmann, S., Wassmann, K., Jung, A., Velten, M., Knuefermann, P., Petoumenos, V., Becher, U., Werner, C., Mueller, C. and Nickenig, G. 2007. Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J. Mol. Cell. Cardiol. 43, 301-307. https://doi.org/10.1016/j.yjmcc.2007.06.001
  34. Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T. K., Turner, D., Rupp, R., Hollenberg, S. and et al. 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761-766. https://doi.org/10.1126/science.1846704
  35. Wullschleger, S., Loewith, R. and Hall, M. N. 2006. TOR signaling in growth and metabolism. Cell 124, 471-484. https://doi.org/10.1016/j.cell.2006.01.016
  36. Yoshida, T., Kaestner, K. H. and Owens, G. K. 2008. Conditional deletion of Kruppel-like factor 4 delays down-regulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ. Res. 102, 1548-1557. https://doi.org/10.1161/CIRCRESAHA.108.176974
  37. Yun, S. J., Kim, E. K., Tucker, D. F., Kim, C. D., Birnbaum, M. J. and Bae, S. S. 2008. Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase $B{\alpha}$. Biochem. Biophys. Res. Commun. 371, 138-143. https://doi.org/10.1016/j.bbrc.2008.04.029
  38. Zhou, G. L., Tucker, D. F., Bae, S. S., Bhatheja, K., Birnbaum, M. J. and Field, J. 2006. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J. Biol. Chem. 281, 36443-36453. https://doi.org/10.1074/jbc.M600788200

Cited by

  1. Effects of MicroRNA-27a on Myogenin Expression and Akt/FoxO1 Signal Pathway during Porcine Myoblast Differentiation 2017, https://doi.org/10.1080/10495398.2017.1348357
  2. Leucine promotes differentiation of porcine myoblasts through the protein kinase B (Akt)/Forkhead box O1 signalling pathway vol.119, pp.07, 2018, https://doi.org/10.1017/S0007114518000181