DOI QR코드

DOI QR Code

Estimation of Shear Strength of Beam-Column Joints

철근콘크리트 보-기둥 접합부 전단강도 평가

  • Choi, Ha-Young (Dept. of Architectural Engineering, Sungkyunkwan University) ;
  • Kim, Byoung-Il (Dept. of Architectural Engineering, Sungkyunkwan University) ;
  • Lee, Jung-Yoon (Dept. of Architectural Engineering, Sungkyunkwan University)
  • 최하영 (성균관대학교 건축공학과) ;
  • 김병일 (성균관대학교 건축공학과) ;
  • 이정윤 (성균관대학교 건축공학과)
  • Received : 2011.12.30
  • Accepted : 2012.02.03
  • Published : 2012.04.30

Abstract

In this study, an estimation equation was proposed to predict the shear strength of RC interior beam-column connections. The proposed equation considered the effect of both truss and arch mechanisms, while the existing equations in the ACI and AIJ design codes consider only arch mechanism. In addition, the proposed equation estimates the shear strength of RC joints by considering the contribution of the vertical and horizontal steel bars on the effective compressive strength of concrete. The shear strength of RC joints calculated by the proposed equation was compared with the test results of 54 RC joints, which failed in shear before plastic hinges developed at the end of the adjacent beams. The comparison study showed that the proposed equation estimated the strength of the 54 specimens with a mean value of 1.14 and the coefficient of variation of 20%. The proposed equation provides improved prediction compared to those obtained from the equations in the ACI and AIJ design codes.

이 연구에서는 인접한 보에 소성힌지가 발생하기 전에 접합부에서 전단파괴가 발생하는 내부 보-기둥 접합부의 전단강도를 평가하기 위해서 식을 제안하였다. ACI와 AIJ의 기존 기준식은 콘크리트의 압축강도만을 고려하여 평가하지만 제안식은 트러스 작용 또한 고려하고 있다. 제안식은 콘크리트의 연화효과를 반영하기 위해 적용하는 콘크리트 유효압축계수를 구할 때 수직, 수평 철근을 고려하여 접합부의 전단강도를 평가한다. 그 결과, $V_{test}/V_{cal}$의 평균은 1.14, 변동계수는 20%이고 ACI와 AIJ에 의한 평가보다 비교적 향상된 결과를 보였다. $V_{test}/V_{cal}$는 각 방향의 철근비에 따라 비슷한 경향을 보이고 있음을 알 수 있다.

Keywords

References

  1. Joint ACI-ASCE Committee 352, Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures, American Concrete Institute, Farmington Hills, Michigan, 2003, pp. 1-16.
  2. Architectural Institute of Japan, AIJ Standard for Structural Calculation of Reinforced Concrete Structures, Revised 2010, pp. 179-190.
  3. NZS 3101: Part 1, Concrete Structures Standard (NZS 3101:1995), Standard Association of New Zealand, Willington, New Zealand, 1995, pp. 105-111.
  4. Nielsen, M. P. and Braestrup, M. W., "Plastic Shear Strength of Reinforced Concrete Beams," Bygningsstatiske Meddelelser, Denmark, Vol. 46, No. 3, 1975, pp. 61-69.
  5. Paulay, T. and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, Jogn Wiley and Sons, New York, 1992, pp. 250-263.
  6. Hsu, T. T. C., "Softened Truss Model Theory for Shear and Torsion," ACI Structural Journal, Vol. 85, No. 6, 1988, pp. 624-635.
  7. Vecchio, F. J. and Collins, M. P., "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear," ACI Structural Journal, Vol. 83, No. 2, 1989, pp. 219-231.
  8. 신도로교해설 콘크리트편, Ver. 1.0, 2010, pp. 107-119(국토해양부 심의중).
  9. Hayashi, K. and Teraoka, M., "鐵筋コソクリ一ト造十字形柱.はり接合部の力學性狀に關すゐ硏究," Architectural Institute of Japan, 日本建築學會大會學術講演梗槪集, 1961, pp. 117-118.
  10. Oka, K. and Siohara, H., "Tests of High-Strength Concrete Inerior Beam-Column Joint Subassemblages," Earthquake Engineering, 1992, pp. 3211-3217.
  11. Meinheit, D. F. and Jirsa, J. O., "Shear Strength of R/C Beam-Co;umn Connections," Proceedings of the ASCE, Vol. 107, No. ST11, 1981, pp. 2227-2244.
  12. Noguchi, H. and Kasiwazaki, T., "Experimental Studies on Shear Performances of RC Interior Column-Beam Joints with High-Strength Materials," Earthquake Engineering, 10th World Conference, 1992, pp. 3163-3168.
  13. Fujii, S. and Morita, S., "Comparison between Interior and Exterior RC Beam-Column Joint Behavior," ACI SP-123, 1991, pp. 145-166.
  14. Kawasaki, K., et al., "高强度コソクリ一トを用いた內柱梁接合部に關すゐ實驗的硏究," Architectural Institute of Japan, 日本建築學會大會學術講演梗槪集, 1991, pp. 579-580.
  15. Hatamoto, H., et al., 30階建鐵筋コソクリ一ト造超高層建物の耐震設計, Architectural Institute of Japan, 日本建築學會大會學術講演梗槪集, 1961, pp. 91-92.
  16. Danaka, N., et el, "RC造內部梁柱接合部への柱端からの鉛直方向力に關すゐ硏究," コソクリ一ト工學年次論文集, Vol. 28, No. 2, 2006, pp. 289-294.
  17. Teraoka, M., Kanoh, Y., Sasaki, S., and Hayashi, K., "An Stimation of Ductility in Interior Beam-Column Subassemblages of Reinforced Concrete Frames," The Society of Materials Science, Vol. 45, No. 9, 1996, pp. 1033-1041. https://doi.org/10.2472/jsms.45.1033
  18. Watanabe, K., Abe, K., Murakawa, J., and Noguchi, H., "Strength and Deformation of Reinforced Concrete Interior Beam-Column Joints," Transactions of the Japan Concrete Institute, Vol. 10, 1988, pp. 183-188.