DOI QR코드

DOI QR Code

FUNCTIONAL RELATIONS INVOLVING SARAN'S HYPERGEOMETRIC FUNCTIONS FE AND F(3)

  • Kim, Yong-Sup (Department of Mathematics Education, Wonkwang University) ;
  • Hasanov, Anvar (Institute of Mathematics and Information Technology)
  • 투고 : 2011.10.10
  • 심사 : 2012.02.16
  • 발행 : 2012.02.28

초록

By simply splitting the hypergeometric Saran function $F_E$ into eight parts, we show how some useful and generalized relations between $F_E$ and Srivas- tava's hypergeometric function $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables.

키워드

참고문헌

  1. M. Abramowitz & I.A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965.
  2. A. Altin: Some expansion formulas for a class of singular partial differential equations. Proc. Amer. Math. Soc. 85 (1982), no. 1, 42-46. https://doi.org/10.1090/S0002-9939-1982-0647894-1
  3. P. Appell & J. Kampe de Feriet: Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite. Gauthier - Villars, Paris, 1926.
  4. J. Barros-Neto & I.M. Gelfand: Fundamental solutions for the Tricomi operator. Duke Math. J. 98 (1999), no. 3, 465-483. https://doi.org/10.1215/S0012-7094-99-09814-9
  5. J. Barros-Neto & I.M. Gelfand: Fundamental solutions for the Tricomi operator II. Duke Math. J. 111 (2002), no. 3, 561-584. https://doi.org/10.1215/S0012-7094-02-11137-5
  6. J. Barros-Neto & I.M. Gelfand: Fundamental solutions for the Tricomi operator III. Duke Math. J. 128 (2005), no. 1, 119-140. https://doi.org/10.1215/S0012-7094-04-12815-5
  7. L. Bers: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York, 1958.
  8. B.C. Carlson: Some extensions of Lardner's relations between $_{\circ}F3$ and Bessel functions. SIAM J. Math. Anal. 1 (1970), no. 2, 232-242. https://doi.org/10.1137/0501021
  9. J. Choi, A. Hasanov & H.M. Srivastava: Relations between Lauricella's triple hypergeo- metric function $FA^{(3)}$[x; y; z] and the Srivastava function $FA^{(3)}$[x; y; z]. Integral Transforms and Special Functions (2011), DOI:10.1080/10652469.2011.596710.
  10. J. Choi, A. Hasanov & M. Turaev: Serendipitous functional relations deducible from certain generalized triple hypergeometric functions. Kyungpook Math. J. (2009), to appear.
  11. A. Erdelyi, W. Magnus, F. Oberhettinger & F.G. Tricomi: Higher Transcendental Functions. Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  12. A. Erdelyi, W. Magnus, F. Oberhettinger & F.G. Tricomi: Higher Transcendental Functions. Vol. 2, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  13. F.I. Frankl: Selected Works in Gas Dynamics. Nauka, Moscow 1973.
  14. A.J. Fryant: Growth and complete sequences of generalized bi-axially symmetric potentials. J. Diff. Equa. 31 (1979), no. 2, 155-164. https://doi.org/10.1016/0022-0396(79)90141-4
  15. A. Hasanov: Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. Complex Variables and Elliptic Equations 52 (2007), no. 8, 673-683. https://doi.org/10.1080/17476930701300375
  16. A. Hasano : Some solutions of generalized Rassias's equation. Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30.
  17. A. Hasanov : Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13 (2008), no. 8, 41-49.
  18. A. Hasanov and E.T. Karimov: Fundamental solutions for a class of three-dimensional elliptic equations with singular coeffcients. Appl. Math. Lett. 22 (2009), 1828-1832. https://doi.org/10.1016/j.aml.2009.07.006
  19. A. Hasanov, J.M. Rassias & M. Turaev: Fundamental solution for the generalized Elliptic Gellerstedt Equation, Book: Functional Equations, Difference Inequalities and ULAM Stability Notions. Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83.
  20. A. Hasanov & H. M. Srivastava: Some decomposition formulas associated with the Lauricella Function and other multiple hypergeometric functions. Appl. Math. Lett. 19 (2006), 113-121. https://doi.org/10.1016/j.aml.2005.03.009
  21. A. Hasanov & H. M. Srivastava: Decomposition formulas associated with the Lauricella multivariable hypergeometric functions. Comput. Math. Appl. 53 (2007), no. 7, 1119-1128. https://doi.org/10.1016/j.camwa.2006.07.007
  22. A. Hasanov, H. M. Srivastava & M. Turaev: Decomposition formulas for some triple hypergeometric functions. J. Math. Anal. Appl. 324 (2006), 955-969. https://doi.org/10.1016/j.jmaa.2006.01.006
  23. A. Hasanov & M. Turaev: Decomposition formulas for the double hypergeometric G1 and G2 Hypergeometric functions. Appl. Math. Comput. 187 (2007), no. 1, 195-201. https://doi.org/10.1016/j.amc.2006.08.115
  24. Y.S. Kim, A.K. Rathie & J. Choi: Note on Srivastava's triple hypergeometric series $H_{A}$. Commun. Korean Math. Soc. 18 (2003), no. 3, 581-586. https://doi.org/10.4134/CKMS.2003.18.3.581
  25. T.J. Lardner: Relations between $_{\circ}F3$ and Bessel functions. SIAM Review 11 (1969), 69-72. https://doi.org/10.1137/1011007
  26. T.J. Lardner & C.R. Steele: Symmetric deformations of circular cylindrical elastic shells of exponentially varying thickness. Trans. ASME Ser. E. J. Appl. Mech. 35 (1968), 169-170. https://doi.org/10.1115/1.3601137
  27. G. Lohofer: Theory of an electromagnetically deviated metal sphere. 1: Absorbed power. SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
  28. P.A. McCoy: Polynomial approximation and growth of generalized axisymmetric potentials. Canad. J. Math. 31 (1979), no. 1, 49-59. https://doi.org/10.4153/CJM-1979-006-7
  29. A.W. Niukkanen: Generalized hypergeometric series arising in physical and quantum chemical applications. J. Phys. A: Math. Gen. 16 (1983), 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
  30. A.K. Rathie & Y.S. Kim: Further results on Srivastava's triple hypergeometric series $H_{A}$ and $H_{C}$. Ind. J. Pure Appl. Math. 35 (2004), no. 8, 991-1002.
  31. M.S. Salakhitdinov & A. Hasanov: A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation. Complex Variables and Elliptic Equations 53 (2008), no. 4, 355-364. https://doi.org/10.1080/17476930701769041
  32. H.M. Srivastava: Hypergeometric functions of three variables. Ganita 15 (1964), no. 2, 97-108.
  33. H.M. Srivastava: Some integrals representing hypergeometric functions. Rend. Circ. Mat. Palermo 16 (1967), no. 2, 99-115. https://doi.org/10.1007/BF02844089
  34. H.M. Srivastava & J. Choi: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
  35. H.M. Srivastava & P.W. Karlsson: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.
  36. M. Turaev: Decomposition formulas for Srivastava's hypergeometric function on Saran functions. Comput. Appl. Math. 233 (2009), 842-846. https://doi.org/10.1016/j.cam.2009.02.050
  37. G.N. Watson: A Treatise on the Theory of Bessel Functions. 2nd Edi., Cambridge University Press, Cambridge, London and New York, 1944.
  38. A. Weinstein: Discontinuous integrals and generalized potential theory. Trans. Amer. Math. Soc. 63 (1946), 342-354.
  39. A. Weinstein: Generalized axially symmetric potential theory. Bull. Amer. Math. Soc. 59 (1953), 20-38. https://doi.org/10.1090/S0002-9904-1953-09651-3
  40. R.J. Weinacht: Fundamental solutions for a class of singular equations. Contrib. Diff. Equa. 3 (1964), 43-55.