기가비트 WPAN용 고성능 가변길이 리드-솔로몬 복호기 구조

High-Performance Variable-Length Reed-Solomon Decoder Architecture for Gigabit WPAN Applications

  • 최창석 (인하대학교 정보통신공학부) ;
  • 이한호 (인하대학교 정보통신공학부)
  • Choi, Chang-Seok (School of Information and Communication Engineering, Inha University) ;
  • Lee, Han-Ho (School of Information and Communication Engineering, Inha University)
  • 투고 : 2011.05.12
  • 심사 : 2012.01.05
  • 발행 : 2012.01.25

초록

본 논문은 고속 WPAN 시스템에 대한 가변 길이 8-병렬 리드-솔로몬(RS) 복호기에 관한 일반적인 구조를 제안한다. 제안된 구조는 RS(255,239) 코드뿐만 아니라 다양한 단축화 RS 부호들을 지원 할 수 있다. 특히, 가변길이 구조는 다양한 단축화 RS 부호에 대해 가변적인 낮은 지연을 제공하며, 8-병렬 구조를 적용하여 높은 데이터 처리율을 제공한다. 제안된 RS 복호기는 90-$nm$ CMOS 표준 셀 기술을 사용하여 성능 분석을 수행하였고, 클록 주파수 300$MHz$에서 19-$Gbps$ 데이터 처리율을 제공한다.

This paper presents a universal architecture for variable-length eight-parallel Reed-Solomon (RS) decoder for high-rate WPAN systems. The proposed architecture can support not only RS(255,239) code but various shortened RS codes. Moreover, variable-length architecture provides variable low latency for various shortened RS codes and the eight-parallel design also provides high data processing rate. Using 90-$nm$ CMOS standard cell technology, the proposed RS decoder has been synthesized and measured for performance. The proposed RS decoder can provide a maximum 19-$Gbps$ data rate at clock frequency 300 $MHz$.

키워드

참고문헌

  1. "Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for High Rate Wireless Personal Area Networks (WPANs): Amendment 2: Millimeter-wave based Alternative Physical layer Extension," IEEE P802.15.3c/D00. 2008.
  2. "High Rate 60GHz PHY, MAC and HDMI PAL" Standard ECMA-387, 1st Edition, Dec.2008. vol. 37, no. 11, pp. 1565-1573, Nov. 2002.
  3. S. B. Wicker, "Error Control Systems for Digital Communication and Storage," Prentice Hall,1995.
  4. D. V. Sarwate and N. R. Shanbhag, "High-speed Architecture for Reed-Solomon decoders" IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 5, pp. 641-655, Oct. 2001. https://doi.org/10.1109/92.953498
  5. H. Lee, "High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder," IEEE Trans. on VLSI Systems, vol. 11, no.2 pp. 288-294, April 2003.
  6. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen and I. S. Reed, "A VLSI Design of a Pipeline Reed-Solomon Decoder," IEEE Trans. on Computers, vol. C-34, no.5, pp. 393-403, May 1985. https://doi.org/10.1109/TC.1985.1676579
  7. S. Lee, H. Lee, J-Y. Shin, and J-S. Ko, "A High-Speed Pipelined Degree-Computationless Modified Euclidean Algorithm Architecture for Reed-Solomon Decoders," 2007 IEEE International Symposium on Circuits and Systems (ISCAS2007), pp. 901-904, May 2007.
  8. S. Lee, C-S. Choi and H. Lee, "Two-parallel Reed-Solomon based FEC Architecture for Optical Communications," IEICE Electronics Express, vol. 5, no.10, pp.374-380, May 2008. https://doi.org/10.1587/elex.5.374
  9. C-S. Choi and H. Lee, "High-Speed Low-Complexity Three-Parallel Reed-Solomon Decoder for 6-Gbps mmWAVE WPAN Systems," European Conference on Circuit theory and Design 2009 (ECCTD'09), pp. 515-518, Aug. 2009.
  10. W. Liu, J. Rho, and W. Sung, "Low-power high-throughput BCH error correction VLSI design for multilevel cell NAND flash memories," in Proc. IEEE Workshop Signal Process. Syst. (SiPS): Des. Imple., pp. 248-253, Oct. 2006.