DE-Based Adaptive Reversible Data Hiding Scheme

DE 기반의 적응적인 가역정보은닉기법

  • Choi, Jang-Hee (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Yoon, Eun-Jun (Department of Cyber Security, Kyungil University) ;
  • Yoo, Kee-Young (School of Computer Science and Engineering, Kyungpook National University)
  • 최장희 (경북대학교 전자전기컴퓨터학부) ;
  • 윤은준 (경일대학교 사이버보안학과) ;
  • 유기영 (경북대학교 IT대학 컴퓨터학부)
  • Received : 2011.02.17
  • Accepted : 2012.03.05
  • Published : 2012.03.25

Abstract

The many DE based data hiding schemes and the many data hiding schemes based on Histogram shifting are researched in spatial domain. The data hiding scheme based on Histogram shifting have an advantage of low distortion of the stego image. But the capacity is low than other schemes. On the other hands, the DE based data hiding schemes have an advantage of high capacity. But the quality of the stego image is low. In this paper, new data hiding scheme which has the similar capacity but the increased quality of the stego image is proposed. The prediction error is divided into blocks to embed the secret data in this scheme. The prediction errors in the block are scanned before the secret data is embedded. If one prediction error is low than the threshold at least, the block is changed to embed the secret data. Otherwise the secret data is not embedded. The distortion of the stego image is minimized by this method. But the block that the secret data embedded is marked in location map. So the additional information to extract the secret data and recover the cover image is needed.

공간 도메인에서 많은 DE 기반의 가역정보은닉 기법과 히스토그램 쉬프팅 기반의 가역정보은닉 기법들이 제안되어 왔다. 히스토그램 쉬프팅 기반의 가역정보은닉 기법은 스테고 이미지의 왜곡이 적다는 장점을 갖는다. 하지만 비밀 데이터의 삽입용량이 적고, 추가 데이터가 많다는 단점이 있다. 이에 반해, DE 기반의 가역정보은닉 기법은 높은 삽입 용량을 갖는다는 장점이 있지만 스테고 이미지의 왜곡이 많다는 단점이 있다. 본 논문에서는 삽입 용량을 유지하지만 스테고 이미지의 왜곡을 줄이는 DE 기반의 가역정보은닉 기법을 제안한다. 본 논문에서는 비밀 데이터를 삽입하기 전에 예측 오차들을 블록으로 나눈 후, 각 블록에 비밀 데이터를 삽입할 수 있는지 확인한다. 만약 블록에한 비트의 비밀 데이터만이라도 삽입하면 블록의 픽셀들은 변화한다. 제안하는 기법은 PSNR이 50dB 이상으로 다른 DE 기반의 가역정보은닉 기법보다 스테고 이미지의 왜곡을 줄인다.

Keywords

References

  1. A. Cheddad, J. Condell, K. Curran, P. Mc Kevitt, "Digital image steganography: Survey and analysis of current methods," Signal Processing 90, pp.727-752, 2010. https://doi.org/10.1016/j.sigpro.2009.08.010
  2. C.W. Honsinger, P. Jones, M. Rabbani, J.C. Stoffel, "Lossless recovery of an original image containing embedded data", US Patent application, Docket No: 77102/E-D, 2001.
  3. J. Tian, "Reversible watermarking by difference expansion", IEEE Transactions on Circuits and System for Video Technology, Vol. 13, Issue. 8, pp.890-896, 2003. https://doi.org/10.1109/TCSVT.2003.815962
  4. Z. Ni, Y. Q. Shi, N. Ansari, W. Su, "Reversible data hiding," IEEE Transactions on Circuits and System for Video Technology, Vol. 16, Num. 3, pp.354-362, 2006. https://doi.org/10.1109/TCSVT.2006.869964
  5. D. M. Thodi, J J Rodriguez. "Expansion embedding techniques for reversible watermarking," IEEE Transactions on Circuits and Systems for Video Technology 19 (6), pp. 906-910, 2007
  6. P. Tsai, Y ChenHub, H. LienYeh, "Reversible image hiding scheme using predictive coding and histogram shifting," Signal Processing 89, pp.1129-1143, 2009. https://doi.org/10.1016/j.sigpro.2008.12.017
  7. C. F. Lee, H. L. Chen, H. K. Tso, "Embedding capacity raising in reversible data hiding based on prediction of difference expansion," The Journal of Systems and Software 83, pp.1864-1872, 2010. https://doi.org/10.1016/j.jss.2010.05.078
  8. Y. Hu, H. K. Lee, and J. Li, "DE-Based reversible data hiding with improved overflow location map," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 19, No. 2, pp.250-260, 2009. https://doi.org/10.1109/TCSVT.2008.2009252
  9. H. C. Wu, C. C. Lee, C. S Tsai, Y. P. Chu, H. R. Chen "A high capacity reversible data hiding scheme with edge prediction and difference expansion," The Journal of Systems and Software 82, pp.1966-1973, 2009. https://doi.org/10.1016/j.jss.2009.06.056
  10. A. M. Alattar, "Reversibel watermark using the difference expansion of a generalized integer transform," IEEE Transactions on image processing, Vol. 13, No. 8, pp.1147-1156, 2004. https://doi.org/10.1109/TIP.2004.828418
  11. H. W. Tseng , C. P. Hsieh, "Prediction-based reversible data hiding," Information Sciences 179, pp.2460-2469, 2009. https://doi.org/10.1016/j.ins.2009.03.014
  12. W. Hong, T. S. Chen, C. W. Shiu, "Reversible data hiding for high quality images using modification of prediction errors," The journal of Systems and Software 82, pp.1833-1842, 2009. https://doi.org/10.1016/j.jss.2009.05.051
  13. X. Zenga, "Lossless Data Hiding Scheme Using Adjacent Pixel Difference Based on Scan Path," Journal of Multimedia, Vol. 4, No. 3, pp.145-152, 2009.
  14. K. S. Kim, M. J. Lee, H. Y. Lee, H. K. Lee, "Reversible data hiding exploiting spatial correlation between sub-sampled images," Pattern Recognition 42, pp.3083-3096, 2009. https://doi.org/10.1016/j.patcog.2009.04.004
  15. M. Chen, Z. Chen, X. Zeng, Z. Xiong, "Reversible Data Hiding Using Additive Prediction-Error Expansion," ACM Multimedia Security'09, pp.19-24, 2009.
  16. Lossless and near-lossless coding of continuous tone still images(JPEG-LS), ISO/IEC JTC1/SC29 WG1 FCD 14495, International Standards Organizations/ International Electrotechnical Commission, 1997 [Online]. Available: http://www.jpeg.org/public/fcd14495p.pdf.
  17. S. K. Yip, O. C. Au, H. M. Wong, C. W. Ho, "Gerneralized lossless data hiding by multiple predictors," IEEE International Symposium on Circuits and Systems, pp.21-24, 2006.