DOI QR코드

DOI QR Code

Effects of Repetitive Transcranial Magnetic Stimulation on Enhancement of Cognitive Function in Focal Ischemic Stroke Rat Model

국소 허혈성 뇌졸중 모델 흰쥐의 인지기능에 반복경두개자기자극이 미치는 효과

  • Lee, Jung-In (Department of Physical Therapy, Dongshin University Oriental Hospital) ;
  • Kim, Gye-Yeop (Department of Physical Therapy, Dongshin University) ;
  • Nam, Ki-Won (Department of Physical Therapy, Dongshin University) ;
  • Lee, Dong-Woo (Department of Physical Therapy, Gwangju Jungang Hospital) ;
  • Kim, Ki-Do (Department of Physical therapy, Korea International University) ;
  • Kim, Kyung-Yoon (Department of Physical Therapy, Dongshin University)
  • 이정인 (동신대 목포한방병원 물리치료실) ;
  • 김계엽 (동신대학교 물리치료학과) ;
  • 남기원 (동신대학교 물리치료학과) ;
  • 이동우 (광주중앙병원 물리치료실) ;
  • 김기도 (한국국제대학교 물리치료학과) ;
  • 김경윤 (동신대학교 물리치료학과)
  • Received : 2012.01.21
  • Accepted : 2012.02.20
  • Published : 2012.02.29

Abstract

Purpose : This study is intended to examine the repetitive transcranial magnetic stimulation on cognitive function in the focal ischemic stroke rat model. Methods : This study selected 30 Sprague-Dawley rats of 8 weeks. The groups were divided into two groups and assigned 15 rats to each group. Control group: Non-treatment after injured by focal ischemic stroke; Experimental group: application of repetitive transcranial magnetic stimulation(0.1 Tesla, 25 Hz, 20 min/time, 2 times/day, 5 days/2 week) after injured by focal ischemic stroke. To assess the effect of rTMS, the passive avoidance test, spatial learning and memory ability test were analyzed at the pre, 1 day, $7^{th}$ day, $14^{th}$ day and immunohistochemistric response of BDNF were analyzed in the hippocampal dentate gyrus at $7^{th}$ day, $14^{th}$ day. Results : In passive avoidance test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In spatial learning and memory ability test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In immunohistochemistric response of BDNF in the hippocampal dentate gyrus, experimental groups was more increased than control group. Conclusion : These result suggest that improved cognitive function by repetitive transcranial magnetic stimulation after focal ischemic stroke is associated with dynamically altered expression of BDNF in hippocampal dentate gyrus and that is related with synaptic plasticity.

Keywords

References

  1. 고명환, 서정환, 장성호, 유우경, 김연희. 반복 경두 개자기자극을 이용한 작업기억 및 시공간 주의력 뇌 신경망 연구. 대한재활의학회지. 2004;28(4): 301-5.
  2. 권용현, 김중선, 장성호. 경두개 직류전류 자극이 대 뇌피질의 뇌 활성도에 미치는 영향. 대한물리치 료학회지. 2009;21(4):73-9.
  3. 김연희, 신승훈, 박성희, 고명환. 뇌질환 후 인지 장 애 환자에서 Donepezil이 인지 기능에 미치는 효 과. 대한재활의학회지. 2002;26(4):374-8.
  4. 노민희, 박수경. 3-Acetylpyridine에 의한 운동실조 동물모델에서 로타로드 운동과 전침이 근활성도 와 혈청 BDNF에 미치는 영향. 한국콘텐츠학회논 문지. 2010;10(4):236-46.
  5. 박해운, 김수정, 서정민, 조윤우, 장민철, 김동규, 안 상호. 척수손상 모델 흰쥐에서의 기능적 자기 자극 치료의 효과. 대한재활의학회지. 2008;32(6): 612-8.
  6. 신승훈, 고명환, 김연희. 컴퓨터 인지재활 프로그램 을 이용한 뇌손상 환자의 인지치료 효과. 대한재 활의학회지. 2002;26(1):1-8.
  7. 온석훈. 비침습적 경두개 뇌자극술이 정상인의 인지 기능 향상에 미치는 영향. 연세대학교 석사학위 논문. 2007.
  8. 이성아, 이향숙. 실제적이고 방법적인 인지운동치료. 재활복지. 2005;9(2):142-64.
  9. 천송희. 해마-의존과 비의존 과제 훈련이 난소절제 술을 시행한 흰쥐의 해마 기능에 미치는 영향. 대구대학교 박사학위 논문. 2009.
  10. Balduini W, De Angelis V, Mazzoni E et al. Long-lasting behavioral alternations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res. 2000;859(2):318-25 https://doi.org/10.1016/S0006-8993(00)01997-1
  11. Bederson JB, Pitts LH, Tsuji M et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17(3):472-6. https://doi.org/10.1161/01.STR.17.3.472
  12. Bekinschtein P, Cammarota M, Katche C et al. BDNF is essential to promote persistence of logn-term memory storage. Proc Natl Acad Sci USA. 2008;105(7):2711-6. https://doi.org/10.1073/pnas.0711863105
  13. Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20(2):84-91. https://doi.org/10.1016/S0166-2236(96)10072-2
  14. Bersani F, Marinelli F, Ognibene A et al. Intramembrane protein distribution in cell cultures is affected by 50Hz pulsed magnetic fields. Bioelectromagnetics, 1997;18(7):463-9. https://doi.org/10.1002/(SICI)1521-186X(1997)18:7<463::AID-BEM1>3.0.CO;2-0
  15. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factor and neurotransmitters. J Neurobiol. 1998;36(2):287-306. https://doi.org/10.1002/(SICI)1097-4695(199808)36:2<287::AID-NEU13>3.0.CO;2-B
  16. Castren E, Rantamaki T. Role of brain-derived neurotrophic factor in the aetiology of depression: implication for pharmacological treatment. CNS Drug. 2010;24(1):1-7. https://doi.org/10.2165/11530010-000000000-00000
  17. Chang WH, Kim YH, Bang OY et al. Long-term effects of rTMS on motor recovery in patients after subacute stroke. J Rehabil Med. 2010;42(8): 758-64. https://doi.org/10.2340/16501977-0590
  18. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosci. 2002;25(6):295-301. https://doi.org/10.1016/S0166-2236(02)02143-4
  19. Diamond PT, Felsenthal G, Macciocchi SN et al. Effect of cognitive impairment on rehabilitation outcome. Am J Phys Med Rehabil. 1996;75(1): 40-3. https://doi.org/10.1097/00002060-199601000-00011
  20. Fuchs E, Gould E. Mini-review: in vivo neurogenesis in the adult brain: regulationand functional implications. Eur J Neurosci. 2000;12(7):2211-4. https://doi.org/10.1046/j.1460-9568.2000.00130.x
  21. Gersner R, Kravetz E, Feil J et al. Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci. 2011;31(20):7521-6. https://doi.org/10.1523/JNEUROSCI.6751-10.2011
  22. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46(11):1472-9. https://doi.org/10.1016/S0006-3223(99)00247-4
  23. Ikeda T, Mishima K, Yoshikawa T et al. Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res. 2001;118(1):17-25. https://doi.org/10.1016/S0166-4328(00)00287-4
  24. Jang SH, Ahn SH, Byun WM et al. The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study. Neurosci Lett. 2009;460 (2):117-20. https://doi.org/10.1016/j.neulet.2009.05.037
  25. Keck ME, Sillaber I, Ebner K et al. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci. 2000;12(1):3713-20. https://doi.org/10.1046/j.1460-9568.2000.00243.x
  26. Lee JL, Everitt BJ, Thomas KL. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science. 2004;304(5672):839-43. https://doi.org/10.1126/science.1095760
  27. Longa EZ, Weinstein PR, Carlson S et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91. https://doi.org/10.1161/01.STR.20.1.84
  28. Longo FM, Yang T, Hamilton S et al. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J Neurosci Res. 1999;55(2):230-7. https://doi.org/10.1002/(SICI)1097-4547(19990115)55:2<230::AID-JNR10>3.0.CO;2-3
  29. Mally J, Stone TW. New advances in the rehabilitation of CNS disease applying rTMS. Expert Rev Neurother. 2007;7(2):165-77. https://doi.org/10.1586/14737175.7.2.165
  30. Minussi C, Rossini PM. Transcranial magnetic stimulation in congnitive rehabilitation. Neuropsychol Rehabil. 2011;21(5):579-601. https://doi.org/10.1080/09602011.2011.562689
  31. Morris RG. Development of a water maze proecdure for studying spatial learning in the rat. J Neurosci Meth. 1984;11;47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  32. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Rev. 2003;41(2-3):268-87. https://doi.org/10.1016/S0165-0173(02)00268-0
  33. Ogiue-Ikeda M, Kawato S, Ueno S. The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res. 2003;993(1-2): 222-6. https://doi.org/10.1016/j.brainres.2003.09.009
  34. Paolucci S, Antonucci G, Gialloreti LE et al. Predicting stroke inpatient rehabilitation outcome: the prominent role of neuropsychological disorders. Eur Neurol. 1996;36(6):385-90. https://doi.org/10.1159/000117298
  35. Pape TL, Roesnow J, Lewis G. Transcranial magnetic stimulation: a possible treatment for TBI. J Head Trauma Rehabil. 2006;21(5):437-51. https://doi.org/10.1097/00001199-200609000-00063
  36. Pascual-Leone A, Hallett M. Introduction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport. 1994;5(18):2517-20. https://doi.org/10.1097/00001756-199412000-00028
  37. Pascual-Leone A, Rubio B, Pallardo F et al. Rapidrate transcrainial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348(9022):233-7. https://doi.org/10.1016/S0140-6736(96)01219-6
  38. Picarelli H, Teixeira MJ, de Andrade DC et al. Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I. J Pain. 2010;11(11):1203-10. https://doi.org/10.1016/j.jpain.2010.02.006
  39. Ploughman M. Exercise is brain food: the effects of physical activity on cognitive function. Dev Neurorehail. 2008;11(3):236-40. https://doi.org/10.1080/17518420801997007
  40. Post A, Muller MB, Engelmann M et al. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci. 1999;11(9):3247-54. https://doi.org/10.1046/j.1460-9568.1999.00747.x
  41. Post RM, Kimbrell TA, McCann UD et al. Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: present status and future potential. J ECT. 1999;15(1):39-59.
  42. Rasquin SM, Lodder J, Ponds RW et al. Cognitive functioning after stroke: a one-year follow-up study. Dement Geriatr Cogn Disord. 2004;18(2): 138-44. https://doi.org/10.1159/000079193
  43. Roman A, Zyss T, Nalepa I. Magnetic field inhibits isolated lymphocytes' proliferative response to mitogen stimulation. Bioelectromagnetics. 2005;26 (3):201-6. https://doi.org/10.1002/bem.20066
  44. Rossi C, Angelucci A, Costantin L et al. Brainderived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci. 2006;24(7):1850-6. https://doi.org/10.1111/j.1460-9568.2006.05059.x
  45. Shors TJ, Miesegaes G, Beylin A et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410(6826):372-6. https://doi.org/10.1038/35066584
  46. Van der Zee EA, Biemans BA, Gerkema MP et al. Habituation to a test apparatus during associative learning is sufficient to enhance muscarinic acetylcholine receptor- immunoreactivity in rat suprachiasmatic nucleus. J Neurosci Res. 2004;78 (4):508-19. https://doi.org/10.1002/jnr.20300
  47. Wang HY, Crupi D, Liu J et al. Repetitive transcranial magnetic stimulation enhances BDNFTrkB signaling in both brain and lymphocyte. J Neurosci. 2011;31(30):11044-54. https://doi.org/10.1523/JNEUROSCI.2125-11.2011
  48. Webster BR, Celnik PA, Cohen LG. Noninvasive brain stimulation in stroke rehabilitation. NeuroRx. 2006;3(4):474-81. https://doi.org/10.1016/j.nurx.2006.07.008

Cited by

  1. What Factors Impact Consumer Perception of the Effectiveness of Health Information Sites? An Investigation of the Korean National Health Information Portal vol.32, pp.7, 2017, https://doi.org/10.3346/jkms.2017.32.7.1077