• Title/Summary/Keyword: rTMS

Search Result 99, Processing Time 0.023 seconds

Effects of Differences Frequency of Repeated Transcranial Magnetic Stimulation Applied to the Less Affected Contralesional Corticomotor Area on Upper Extremity Function in Patients with Stroke (뇌졸중 환자의 비손상측 대뇌겉질 운동영역에 적용한 반복 경두개 자기자극의 빈도가 팔 기능에 미치는 영향 )

  • Ha-Na Kim;Sang-Mi Chung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.281-289
    • /
    • 2023
  • Purpose : In this study, we aimed to determine how frequencies different of repetitive transcranial magnetic stimulation applied to the less affected contalesional corticomotor area affect upper extremity motor function in patients with acute stroke within 3 months of onset. By doing so, we aimed to propose a new method of rTMS intervention based on the degree of damage and recovery status of the patient, rather than the generalized rTMS intervention that has been used uniformly. Methods : The rTMS intervention was applied on the contralesional side of the cerebral hemisphere damage. 15 subjects in the HF-rTMS group, 12 subjects in the LF-rTMS group, and 14 subjects in the SF-rTMS group were randomized to receive the rTMS intervention in each group for a total of 10 sessions on five consecutive weekdays for two weeks, and underwent FMA-U to determine changes in upper extremity function following the intervention in each group. FMA-U was performed within 24 hours before and after the rTMS intervention. Results : When the FMA-U was performed to determine the pre- and post-intervention changes in upper extremity motor function within the groups, no statistically significant differences were found in the SF-rTMS group before and after the intervention, but significant statistical differences were found in the HF-rTMS group (p=.006) and the LF-rTMS group (p=.020), with greater significance in the HF-rTMS group than the LF-rTMS group. Conclusion : This study confirmed that compensatory action by activating the less affected contralesional corticomotor area based on the bimodal balance-recovery model can support upper extremity recovery patients with acute stroke within 3 months of onset, depending on the degree of damage level and recovery status. Therefore, the results of the contralesional HF-rTMS application in this study may provide a basis for proposing a new rTMS intervention for upper extremity recovery in stroke patients.

Clinical Efficacy of Repetitive Transcranial Magnetic Stimulation for Treatment of Depression and Latest Trends in TMS Techniques (반복 경두개자기자극술의 우울증 치료효과 및 최신동향에 대한 고찰)

  • Kim, Shin Tae;Kim, Hae Won;Kim, Se Joo;Kang, Jee In
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.3
    • /
    • pp.95-109
    • /
    • 2017
  • Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique which can change cortical excitability in targeted area by producing magnetic field pulses with an electromagnetic coil. rTMS treatment has been used to treat various neuropsychiatric disorders including depression. In this review, we evaluate the literature on rTMS for depression by assessing its efficacy on different subtypes of depression and different technical parameters. In particular, we focus on the results of randomized clinical trials and meta-analyses for depression after the US Food and Drug Administration approval in 2008, which acknowledged its efficacy and acceptability. We also review the new forms of rTMS therapy including deep TMS, theta-burst stimulation, and magnetic seizure therapy (MST) that have been under recent investigation. High frequency rTMS over left dorsolateral prefrontal cortex (DLPFC), low frequency rTMS over right DLPFC, or bilateral rTMS is shown to be effective and acceptable in treatment for patients with non-psychotic, unipolar depression either as monotherapy or adjuvant. Deep TMS, theta-burst stimulation and MST are promising new TMS techniques which warrant further research.

Effects of High Frequency Repetitive Transcranial Magnetic Stimulation on Function in Subacute Stroke Patients

  • Cha, Hyun-Gyu;Kim, Myoung-Kwon;Nam, Hyoung-Chun;Ji, Sang-Goo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.192-196
    • /
    • 2014
  • The aim of the present study was to examine the effects of high and low frequency repetitive transcranial magnetic stimulation on motor cortical excitability and the balance function in subacute stroke patients. Twenty-four subjects were randomly assigned to either the high frequency (HF) rTMS group, or the low frequency (LF) rTMS group, with 12 subjects each. All subjects received routine physical therapy. In addition, both groups performed a total of 20 sessions of rTMS for 20 minutes, once a day, 5 times per week, for a 4-week period. In the HF rTMS group, 10 Hz rTMS was applied daily to the hotspot of the lesional hemisphere; and in the LF rTMS group, 1 Hz rTMS was applied daily to the hotspot of the nonlesional hemisphere. Motor cortex excitability was determined by motor evoked potentials, and the balance function was evaluated by use of the Balance Index (BI) and the Berg Balance Scale (BBS), before and after the intervention. The change rate in the value of each variable differed significantly between the two groups (p<0.05). Furthermore, significant differences were observed between all post-test variables of the two groups (p<0.05). In the HF rTMS, significant differences were found in all the pre- and post-test variables (p<0.05). On the other hand, in the LF rTMS, significant difference was observed only between the pre- and post-test results of BI and BBS (p<0.05). The findings demonstrate that HF rTMS can be more helpful in improving the motor cortical excitability and balance function of patients with subacute stroke treatment than LF rTMS, and that it may be used as a practical adjunct to routine rehabilitation.

Effect of rTMS on Motor Sequence Learning and Brain Activation : A Preliminary Study (반복적 경두부 자기자극이 운동학습과 뇌 운동영역 활성화에 미치는 영향 : 예비연구)

  • Park, Ji-Won;Kim, Jong-Man;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.17-27
    • /
    • 2003
  • Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability beyond the duration of the rTMS trains themselves. Depending on rTMS parameters, a lasting inhibition or facilitation of cortical excitability can be induced. Therefore, rTMS of high or low frequency over motor cortex may change certain aspects of motor learning performance and cortical activation. This study investigated the effect of high and low frequency subthreshold rTMS applied to the motor cortex on motor learning of sequential finger movements and brain activation using functional MRI (fMRI). Three healthy right-handed subjects (mean age 23.3) were enrolled. All subjects were trained with sequences of seven-digit rapid sequential finger movements, 30 minutes per day for 5 consecutive days using their left hand. 10 Hz (high frequency) and 1 Hz (low frequency) trains of rTMS with 80% of resting motor threshold and sham stimulation were applied for each subject during the period of motor learning. rTMS was delivered on the scalp over the right primary motor cortex using a figure-eight shaped coil and a Rapid(R) stimulator with two Booster Modules (Magstim Co. Ltd, UK). Functional MRI (fMRI) was performed on a 3T ISOL Forte scanner before and after training in all subjects (35 slices per one brain volume TR/TE = 3000/30 ms, Flip angle $60^{\circ}$, FOV 220 mm, $64{\times}64$ matrix, slice thickness 4 mm). Response time (RT) and target scores (TS) of sequential finger movements were monitored during the training period and fMRl scanning. All subjects showed decreased RT and increased TS which reflecting learning effects over the training session. The subject who received high frequency rTMS showed better performance in TS and RT than those of the subjects with low frequency or sham stimulation of rTMS. In fMRI, the subject who received high frequency rTMS showed increased activation of primary motor cortex, premotor, and medial cerebellar areas after the motor sequence learning after the training, but the subject with low frequency rTMS showed decreased activation in above areas. High frequency subthreshold rTMS on the motor cortex may facilitate the excitability of motor cortex and improve the performance of motor sequence learning in normal subject.

  • PDF

Repetitive transcranial magnetic stimulation in central post-stroke pain: current status and future perspective

  • Riva Satya Radiansyah;Deby Wahyuning Hadi
    • The Korean Journal of Pain
    • /
    • v.36 no.4
    • /
    • pp.408-424
    • /
    • 2023
  • Central post-stroke pain (CPSP) is an incapacitating disorder that impacts a substantial proportion of stroke survivors and can diminish their quality of life. Conventional therapies for CPSP, including tricyclic antidepressants, anticonvulsants, and opioids, are frequently ineffective, necessitating the investigation of alternative therapeutic strategies. Repetitive transcranial magnetic stimulation (rTMS) is now recognized as a promising noninvasive pain management method for CPSP. rTMS modulates neural activity through the administration of magnetic pulses to specific cortical regions. Trials analyzing the effects of rTMS on CPSP have generated various outcomes, but the evidence suggests possible analgesic benefits. In CPSP and other neuropathic pain conditions, high-frequency rTMS targeting the primary motor cortex (M1) with figure-eight coils has demonstrated significant pain alleviation. Due to its associaton with analgesic benefits, M1 is the most frequently targeted area. The duration and frequency of rTMS sessions, as well as the stimulation intensity, have been studied in an effort to optimize treatment outcomes. The short-term pain relief effects of rTMS have been observed, but the long-term effects (> 3 months) require further investigation. Aspects such as stimulation frequency, location, and treatment period can influence the efficacy of rTMS and ought to be considered while planning the procedure. Standardized guidelines for using rTMS in CPSP would optimize therapy protocols and improve patient outcomes. This review article provides an up-to-date overview of the incidence, clinical characteristics, outcome of rTMS in CPSP patients, and future perspective in the field.

Effects of Repetitive High Frequency Motor Cortex Transcranial Magnetic Stimulation and Cortical Disinhibition in Diabetic Patients with Neuropathic Pain: A Case Control Study (신경병성 통증이 있는 당뇨 환자에서 반복 경두개 자기자극치료의 효과 및 피질 탈억제 현상: 환자 대조군 연구)

  • Han, Yong;Lee, Chan Ho;Min, Kyung Wan;Han, Kyung Ah;Choi, Hyo Seon;Kang, Youn Joo
    • Clinical Pain
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Objective: To investigate the cortical disinhibition in diabetic patients with neuropathic pain and without pain. In addition, we assessed the cortical disinhibition and pain relief after repetitive transcranial magnetic stimulation (rTMS). Method: We recruited diabetic patients with neuropathic pain (n = 15) and without pain (n = 15). We compared the TMS parameters such as motor evoked potential (MEP) amplitude, cortical silent period (CSP), intracortical inhibition (ICI %) and intracortical facilitation (ICF %) between two groups. Moreover, we evaluated the changes of pain and TMS parameters after five consecutive high frequency (10 Hz) rTMS sessions in diabetic patients with neuropathic pain. The neuropathic pain intensity (visual analog scale) and TMS parameters were assessed on pre-rTMS, post-rTMS 1day, and post-rTMS 5 day. Results: The comparison of the CSP, ICI % revealed significant differences between two groups (p<0.01). After rTMS sessions, the decrease in pain intensity across the three time points revealed a pattern of significant differences (p<0.01). The change of CSP and ICI % across the three test points revealed a pattern of significant differences (p<0.01). The ICI % revealed immediate increase after first rTMS application and significant increase after five rTMS application (p<0.01) in diabetic patients with neuropathic pain. The MEP amplitude and ICF % did not reveal any significant changes. Conclusion: Our findings demonstrate that cortical inhibition was decreased in diabetic patients with neuropathic pain compared with patients without pain. Furthermore, we also identified that five daily rTMS sessions restored the defective intracortical inhibition which related to improvement of neuropathic pain in diabetic patients.

Stroke Recovery Can be Enhanced by using Repetitive Transcranial Magnetic Stimulation Combined with Mirror Therapy

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.28-31
    • /
    • 2014
  • The aim of the present study was to examine whether mirror therapy, in conjunction with repetitive transcranial magnetic stimulation (rTMS), can improve the upper extremity function of stroke patient. This study was conducted with 35 subjects, who were diagnosed as a hemiparesis by stroke. The Mirror plus rTMS group was of 12 members who undertook mirror therapy in conjunction with rTMS, the Mirror group was of 11 members who undertook mirror therapy, and the control group was of 12 members who undertook sham therapy. A motor cortex excitability was performed by motor evoked potential, and upper limb function was evaluated by Fugl-Meyer Assessment, and Box and Block Test. Significant difference was shown after the experiment, in comparison of the groups in terms of latency, and as the result of post hoc test, significant difference was shown between the Mirror plus rTMS group and control group, and between the Mirror group and control group, respectively. Significant difference was shown after the experiment in comparison of the groups in amplitude, and as the result of post hoc test, significant difference was shown between the Mirror plus rTMS group and Mirror group, and between the Mirror plus rTMS group and control group. Significant difference was shown after the experiment, in comparison of the groups in FMA and BBT, and as the result of post hoc test, significant difference was shown between the Mirror plus rTMS group and Mirror group, and between the Mirror group and control group. The study showed that mirror therapy in conjunction with rTMS is more effective to improve upper extremity function, than mirror therapy and sham therapy.

Plasticity Associated Changes in Neurophysiological Tests Following Non Invasive Brain Stimulation in Stroke Rat Model (뇌졸중 쥐모델에서 비침습적뇌자극치료 이후 신경생리학적 검사에서 나타난 뇌가소성과 연관된 변화)

  • Sohn, Min Kyun;Song, Hee-Jung;Jee, Sungju
    • Annals of Clinical Neurophysiology
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • Background: Neuromodulation therapy has been used to an adjunctive treatment promoting motor recovery in stroke patients. The objective of the study was to determine the effect of repetitive transcranial magnetic stimulation (rTMS) on neurobehavioral recovery and evoked potentials in rats with middle cerebral artery occlusion. Methods: Seventy Sprague-Daley rats were induced permanent middle cerebral artery occlusion (MCAO) stroke model and successful stroke rats (n=56) assigned to the rTMS (n=28) and sham (n=28) group. The 10 Hz, high frequency rTMS gave on ipsilesional forepaw motor cortex during 2 weeks in rTMS group. The somatosensory evoked potential (SSEP) and motor evoked potential (MEP) were used to evaluate the electrophysiological changes. Behavioral function of the stroke rat was evaluated by the Rota rod and Garcia test. Results: Forty rats ($N_{rTMS}=20;\;N_{sham}=20$) completed all experimental course. The rTMS group showed better performance than sham group in Rota rod test and Garcia test at day 11 (p<0.05) but not day 18 (p>0.05). The amplitude of MEP and SSEP in rTMS group was larger than sham group at day 18 (p<0.05). Conclusions: These data confirm that the high frequency rTMS on ipsilesional cerebral motor cortex can help the early recovery of motor performance in permanent middle cerebral artery stroke model and it may simultaneously associate with changes in neurophysiological activity in brain.

Effects of Mental Practice in Conjunction with Repetitive Transcranial Magnetic Stimulation on the Upper Limbs of Sub-acute Stroke Patients

  • Ji, Sang-Goo;Kim, Myoung-Kwon;Cha, Hyun-Gyu
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.353-356
    • /
    • 2014
  • The aim of the present study was to examine whether mental practice (MP) in conjunction with repetitive transcranial magnetic stimulation (rTMS) can improve the upper limb function of sub-acute stroke patients. This study was conducted with 32 subjects who were diagnosed with hemiparesis by stroke. The experimental group consisted of 16 members upon each of whom was performed MP in conjunction with rTMS, whreas the control group consisted of 16 members upon each of whom was performed MP and sham rTMS. Both groups received traditional physical therapy for 30 minutes a day, 5 days a week, for 6 weeks; additionally, they received mental practice for 15 minutes a day. The experimental group was instructed to perform rTMS, and the control group was instructed to apply sham rTMS for 15 minutes. A motor cortex excitability analysis was performed by motor evoked potentials (MEPs), and upper limb function was evaluated by Fugl-Meyer Assessment (FMA) and the Box and Block test (BBT). Results showed that the amplitude, latency, FMA, and BBT of the experimental group and the latency, FMA, and BBT of the control group were significantly improved after the experiment (p<0.05). Significant differences were found between the groups in amplitude and latency after the experiment (p<0.05). The results showed that MP in conjunction with rTMS is more effective in improving upper limb function than MP alone.

Effects of Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Lower Extremities of Subacute Stage Incomplete Spinal Cord Injury Patients: A Randomized Controlled Trial

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • The aim of this study was to investigate whether repetitive transcranial magnetic stimulation (rTMS) can improve motor recovery in the lower extremities of the patients with subacute stage spinal cord injury (SCI). This study was conducted with 19 subjects diagnosed with paraplegia because of SCI. The experimental group included 10 subjects who underwent active rTMS, and the control group included 9 subjects who underwent sham rTMS. The SCI patients in the experimental group underwent conventional rehabilitation therapy, and active rTMS was applied daily to the hotspot of the lesional hemisphere. The SCI patients in the control group underwent sham rTMS and conventional rehabilitation therapy. The participants in both the groups received therapy five days per week for six weeks. Latency, amplitude, and velocity were assessed before and after the six-week therapy period. A significant difference in post-treatment gains for the latency and velocity was observed between the experimental and control groups (p < 0.05). However, no significant differences in the amplitude were observed between the two groups (p > 0.05). The results of this study indicate that rTMS may be beneficial in improving motor recovery in the lower extremities of subacute stage SCI patients.